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Visual perceptual learning has been studied extensively
and reported to enhance the perception of almost all
types of training stimuli, from low- to high-level visual
stimuli. Notably, high-level stimuli are often composed
of multiple low-level features. Therefore, it is natural to
ask whether training of high-level stimuli affects the
perception of low-level stimuli and vice versa. In the
present study, we trained subjects with either a
high-level configuration stimulus or a low-level element
stimulus. The high-level configuration stimulus consisted
of two Gabors in the left and right visual fields,
respectively, and the low-level element stimulus was the
Gabor in the right visual field of the configuration
stimulus. We measured the perceptual learning effects
using the configuration stimulus and the element stimuli
in both left and right visual fields. We found that the
configuration perceptual learning equally improved the
perception of the configuration stimulus and both
element stimuli. In contrast, the element perceptual
learning was confined to the trained element stimulus.
These findings demonstrate an asymmetric relationship
between perceptual learning of the configuration and
the element stimuli and suggest a hybrid mechanism of

the configuration perceptual learning. Our findings also
offer a promising paradigm to promote the efficiency of
perceptual learning—that is, gaining more learning
effect with less training time.

Introduction

Repeated training with a visual task can lead
to a long-term behavioral performance boost, a
phenomenon known as visual perceptual learning
(Dosher & Lu, 2016; Watanabe & Sasaki, 2015).
Visual perceptual learning can occur at both low-
and high-levels of the visual processing hierarchy in
the brain (Op de Beeck & Baker, 2010; Watanabe &
Sasaki, 2015). For example, many studies have shown
that training remarkably enhances visual abilities to
detect or discriminate low-level visual features such as
contrast (Dorais & Sagi, 1997; Yu, Zhang, Qiu, & Fang,
2016), orientation (Schoups, Vogels, & Orban, 1995),
spatial frequency (Fiorentini & Berardi, 1980), spatial
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phase (Berardi & Fiorentini, 1987), and hyperacuity
(Fahle & Edelman, 1993). Similarly, recognition and
discrimination of high-level visual stimuli, such as
shape (Kourtzi, Betts, Sarkheil, & Welchman, 2005),
object (Furmanski & Engel, 2000; Sigman & Gilbert,
2000), and face (Bi, Chen, Weng, He, & Fang, 2010),
can be substantially improved by training, as well. One
prominent characteristic shared by perceptual learning
of both low-level features and high-level stimuli is that
the training-induced behavioral improvement is more
or less specific to the trained features or stimuli (Bi et
al., 2010; Furmanski & Engel, 2000; Gilbert & Li, 2012;
Karni & Sagi, 1991; Poggio, Fahle, & Edelman, 1992;
Shiu & Pashler, 1992), although the latter one often
exhibits more tolerance to low-level property changes
(Bi & Fang, 2013). For example, perceptual learning of
contrast detection and motion direction discrimination
at one retinal location showed little or partial transfer
to other locations (Ball & Sekuler, 1982). In contrast,
perceptual learning of object recognition and face view
discrimination has been reported to exhibit complete
transfer across retinal locations and stimulus sizes (Bi et
al., 2010; Furmanski & Engel, 2000).

Over the past decades, numerous studies have
explored the neural mechanisms underlying perceptual
learning and revealed various types of training-induced
neural changes throughout the brain (Dosher & Lu,
2016; Li, 2016; Watanabe & Sasaki, 2015). Inspired
by the behavioral specificities, researchers found that
training-induced modifications occurred in visual
areas that are functionally specialized for trained
stimuli (Maniglia & Seitz, 2018; Sagi, 2011). These
modifications manifested in many different forms,
including cortical response augmentation (Furmanski,
Schluppeck, & Engel, 2004; Lu, Luo, Wang, Fang,
& Chen, 2020; Schwartz, Maquet, & Frith, 2002;
Song, Hu, Li, Li, & Liu, 2010; Yotsumoto, Watanabe,
& Sasaki, 2008; Yu et al., 2016), neural selectivity
enhancement (Op de Beeck, Baker, DiCarlo, &
Kanwisher, 2006; Bi, Chen, Zhou, He, & Fang,
2014; Jehee, Ling, Swisher, van Bergen, & Tong,
2012; Kuai, Levi, & Kourtzi, 2013; Schoups, Vogels,
Qian, & Orban, 2001), noise correlation reduction
(Adab & Vogels, 2011; Bejjanki, Beck, Lu, & Pouget,
2011; Gu et al., 2011) and so on. Intriguingly,
training can even dramatically alter the functional
specializations of visual areas by shifting stimulus
representations to different visual areas after perceptual
learning (Chang, Mevorach, Kourtzi, & Welchman,
2014; Chen, Cai, Zhou, Thompson, & Fang, 2016;
Chowdhury & DeAngelis, 2008). It should be noted
that training-induced modifications are not restricted
to the functionally specialized visual areas for the
trained stimuli. Attention- and decision-making–related
areas involved in perceptual learning have also been
identified (Gilbert & Li, 2012; Law & Gold, 2010;
Maniglia & Seitz, 2018; Watanabe & Sasaki, 2015).

Specifically, researchers have found enhanced selectivity
or attenuated neural responses in the frontoparietal
areas associated with attention and decision-making
(e.g., intraparietal sulcus, anterior cingulate cortex)
(Kahnt, Grueschow, Speck, & Haynes, 2011; Law &
Gold, 2008; Lewis, Baldassarre, Committeri, Romani,
& Corbetta, 2009), as well as increased functional
connectivity between decision-making areas (e.g.,
intraparietal sulcus) and visual areas (e.g., V3A)
(Chen et al., 2016; Law & Gold, 2009; Lewis et al.,
2009). Recently, it has been proposed that all of the
aforementioned modifications could reflect different
aspects of the underlying mechanisms and contribute
collaboratively to the behavioral effects of perceptual
learning (Ahmadi, McDevitt, Silver, & Mednick, 2018;
Jing, Yang, Huang, & Li, 2021; Maniglia & Seitz, 2018).

High-level visual stimuli (e.g., shapes) are composed
of multiple low-level features (e.g., edges), and local
elements are organized to form a global configuration
(Kubilius, Baeck, Wagemans, & Op de Beeck, 2015;
Sripati & Olson, 2010; Ullman, 2007). Taking a
hierarchical Navon stimulus as an example, small
and local letters are organized and configured to
form a large and global letter (Navon, 1977). The
processing of a global configuration often affects
the processing of its local elements, manifested as
increasing the response time to detect local elements
(Bouhassoun, Poirel, Hamlin, & Doucet, 2022; Gerlach
& Poirel, 2020), mitigating the tilt aftereffect of local
elements (He, Kersten, & Fang, 2012) or decreasing the
activity evoked by local elements in early visual areas
(Fang, Kersten, & Murray, 2008; Stoll, Finlayson, &
Schwarzkopf, 2020). In our study, a stimulus composed
of multiple elements is referred to as a configuration
stimulus (see Figure 1A).

Given these findings, perceptual learning of high-level
configuration stimuli and their elements might be closely
intertwined. However, to date, almost all perceptual
learning studies have utilized training and test stimuli
in the same characteristic dimension (e.g., location,
orientation, motion direction, face identity). Notably,
there are several studies suggesting the importance
of learning local elements for perceptual learning of
high-level stimuli. In object perceptual learning, for
example, improved recognition and enhanced selectivity
have been reported for untrained objects that shared
elements with trained ones (Baker, Behrmann, & Olson,
2002; Gölcü & Gilbert, 2009). It remains unclear
whether training with high-level configuration stimuli
would affect the perception of its elements and vice
versa.

To address this issue, here we designed two tasks,
an angle discrimination task and an orientation
discrimination task, in which high-level configuration
and low-level element stimuli were used, respectively.
In the angle discrimination task, the configuration
stimuli consisted of two Gabors presented in the
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Figure 1. Stimuli and experimental protocols in Experiments 1 and 2. (A) Schematic descriptions of trials in the angle discrimination
task (red bar), the orientation discrimination task in the right visual field (blue bar), and the orientation discrimination task in the left
visual field (gray bar). (B) Experimental protocols for the configuration training group and the element training group in Experiment 1
(7-day training) and Experiment 2 (2-day training). At Pre and Post, the three tasks were counterbalanced across subjects.

left and right visual fields, respectively. Subjects were
required to integrate the two Gabors and discriminate
the angle formed by the two Gabors. This task engaged
a cortical stage at least beyond V4, including the lateral
occipital complex or temporal–occipital cortex, where
the neuronal receptive fields cover both the left and
right visual hemifields (Amano, Wandell, & Dumoulin,
2009; Dumoulin & Wandell, 2008). In the orientation
discrimination task, subjects were presented with only
one Gabor in the left or right visual field (i.e., an element
of the configuration stimulus) and were instructed to
make an orientation discrimination judgment with
the Gabor. In our experiments, we randomly assigned
subjects into two groups trained with either the angle

discrimination task or the orientation discrimination
task. For the sake of simplicity, we referred to the two
training groups as the configuration training group
and the element training group. In Experiment 1, we
trained subjects for 7 days to investigate how perceptual
learning of the high-level configuration stimulus would
affect the perception of the low-level element stimulus
and vice versa. In Experiment 2, we explored the time
courses of the configuration training and the element
training by introducing a 2-day training protocol.
Finally, in Experiment 3, we further investigated
whether the element training in both visual fields
could lead to a behavioral improvement in the angle
discrimination task.
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Methods

Participants

Sixty healthy subjects participated in the current
study (Experiment 1: n = 24, eight males, 18–28 years
old; Experiment 2: n = 24, four males, 18–27 years
old; Experiment 3: n = 12, six males, 19–29 years old).
All subjects were right handed, had reported normal
or corrected-to-normal vision, and had no known
neurological or visual disorders. They were naïve to
the purposes of the study and had no prior experience
with any perceptual learning experiment. All subjects
gave written, informed consent in accordance with
the procedures and protocols approved by the human
subject review committee of Peking University. This
study adhered to the tenets of the Declaration of
Helsinki.

Apparatus

All experiments were conducted in a quiet and
dimly lit environment. Visual stimuli were generated
using MATLAB 7.0 (MathWorks, Natick, MA) with
Psychotoolbox-3 extensions (Brainard, 1997; Pelli,
1997). All stimuli were presented on a 21-inch Trinitron
monitor (1024 × 768 spatial resolution, 60-Hz refresh
rate; Sony, Tokyo, Japan) with a gray background
(mean luminance, 49.98 or 40.65 cd/m2). The output
luminance of the monitor was linearized using a
look-up table in conjunction with photometric readings
from a colorCAL colorimeter (Cambridge Research
System, Kent, UK). Subjects viewed the stimuli from
a fixed distance of 68 cm. Their head position was
stabilized with a chin rest and a forehead bar.

Stimuli and tasks

Gabor patches with a randomized phase (radius,
1.5°; spatial frequency, 3 c/°; contrast, 1.0; eccentricity,
6°; sigma, 0.4943) (Figure 1A) were used in all three
experiments. We designed two behavioral tasks: an angle
discrimination task and an orientation discrimination
task. When subjects performed the tasks, they were
instructed to maintain their gaze on a central fixation
dot.

For the angle discrimination task, two configuration
stimuli were each presented for 200 ms and were
separated by a 700-ms blank interval. A configuration
stimulus consisted of two Gabor patches that were
simultaneously presented in the left and right visual
fields, respectively (Figure 1A). Subjects were instructed
to integrate the orientations of the two Gabor patches
and pay attention to the relative angle between them.

The orientations of the two Gabor patches were fixed in
one configuration stimulus (left Gabor, −60°, θL; right
Gabor, +30°, θR; the + and − signs indicate a clockwise
and counterclockwise rotation, respectively, relative to
the vertical axis). In the other configuration stimulus,
the Gabor patches rotated around the fixed orientations
(left Gabor, θL + �θL; right Gabor, θR + �θR; �θL
and �θR could be ±1°, ±3°, ±4°, ±6°, or ±8°). The
temporal order of the two configuration stimuli was
randomized. Subjects needed to compare the relative
angle in the first configuration stimulus with that in the
second one and make a two-alternative forced-choice
(2-AFC) judgment to indicate which stimulus contained
a larger angle by pressing one of two keys. The angle
difference (�θR – �θL) between the two configuration
stimuli was drawn from a predetermined set of 2°, 3°,
4°, 5°, 7°, 9°, and 12°.

For the orientation discrimination task, subjects
were presented with only the left or right half of the
configuration stimuli (i.e., one Gabor patch in the left
or right visual field) (Figure 1A). In a trial, two Gabor
patches with orientations of θ° (left Gabor, −60°; right
Gabor, +30°) and θ + �θ° (�θ = ±1°, ±3°, ±4°,
±6°, or ±8°) were each presented for 200 ms and were
separated by a 700-ms blank interval (Figure 1A).
Their temporal order was also randomized. Subjects
were instructed to make a 2-AFC judgment about the
rotation direction (clockwise or counterclockwise) of
the second Gabor patch relative to the first one by
pressing one of two keys.

Training and test procedures

All three experiments consisted of three phases:
pre-training test (Pre), discrimination training
(Training), and post-training test (Post) (Figure 1B).
These experiments had the same test procedure but
different training procedures. During the test phases
of the experiments, we measured subjects’ thresholds
for the angle discrimination task, the orientation
discrimination task in the right visual field, and the
orientation discrimination task in the left visual field
using the method of constant stimuli (Figure 1B).
The measurement consisted of a ten-block test for
the angle discrimination task and two six-block tests
for the orientation discrimination task in the right
visual field and in the left visual field, respectively.
Each block contained 82 trials. The three tests were
counterbalanced across subjects. Before the test phases,
subjects practiced 20 trials per task, and feedback was
provided to make sure that they fully understood the
tasks.

In Experiment 1, subjects were randomly assigned to
either the configuration training group or the element
training group (n = 12 in each group). All subjects
were trained with feedback for seven consecutive daily
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sessions. In the configuration training group, subjects
were trained with the angle discrimination task. In the
element training group, subjects were trained with the
orientation discrimination task in the right visual field.
Each daily training session consisted of 10 blocks of
82 trials (∼50 minutes); therefore, subjects practiced a
total of 5740 trials in the training phase. The amount
of training was the same for the two training groups.

In Experiment 2, subjects were recruited into
either the configuration training group or the element
training group (n = 12 in each group). Experiment
2 had the same protocol as that in Experiment 1,
except that subjects in Experiment 2 only underwent
two daily training sessions (1640 trials in total)
(Figure 1B).

In Experiment 3, 12 subjects underwent 2-day
interleaved element training. Each daily training
session consisted of 20 blocks of 82 trials. In a session,
subjects completed training blocks with the orientation
discrimination task in the left and right visual fields
alternately (see Figure 4A). The sequences of training
blocks were counterbalanced across subjects. In total,
subjects practiced the orientation discrimination task in
the right visual field for 1640 trials and in the left visual
field for 1640 trials. Therefore, subjects experienced the
same number of trials in each visual field as that in
the configuration training group in Experiment 2. In
Experiment 3, subjects’ eye movements were monitored
using an EyeLink 1000 Plus eye tracker (SR Research,
Ottawa, ON, Canada). Eye movement data showed that
subjects could maintain stable fixation across tasks, and
most of their fixation positions were within 1° from the
fixation point.

Statistical analyses

For the Pre and Post phases, all discrimination
thresholds were estimated using the method of constant
stimuli at 75% correct. Subjects’ improvement in
a task was calculated as (pre-training threshold −
post-training threshold)/pre-training threshold × 100%.
During the training phase, data from all blocks in each
daily training session were pooled together to estimate
the threshold. Then the thresholds were plotted as a
function of the training day.

Discrimination thresholds and improvements were
further analyzed using mixed-design analyses of
variance (ANOVAs) in SPSS Statistics 20.0 (IBM,
Chicago, IL). In t-tests, Bonferroni correction was
used to control the false discovery rate for multiple
comparisons (Bonferroni-corrected level = 0.05/3).
For ANOVAs, η2

p was computed as a measure of
effect size. For t-tests, Cohen’s d was computed as
a measure of effect size. For nonsignificant results
of t-tests, Bayesian analyses were further performed

to quantify the relative strength of two competing
hypotheses (e.g., a null hypothesis and an alternative
hypothesis) (van Doorn et al., 2021). In particular,
a non-overlapping hypothesis Bayes factor (BFNOH)
(Linde, Tendeiro, Selker, Wagenmakers, & Ravenzwaaij,
2021; Morey & Rouder, 2011) was calculated to
evaluate the equivalence between two conditions with
relatively small sample sizes. A BFNOH more than
1 could be interpreted as evidence for equivalence.
JASP 0.16.3 was used to perform the Bayesian
analyses.

Results

Experiment 1

In Experiment 1, we designed a configuration training
protocol and an element training protocol. We trained
subjects for 7 days to investigate how perceptual learning
of the high-level configuration stimulus would affect the
perception of the low-level element stimulus and vice
versa. We first examined the perceptual learning
effects on the angle and the orientation discrimination
performance in the configuration training group after
7-day training of the angle discrimination task. During
training, subjects’ angle discrimination thresholds
decreased gradually, and most of the improvement
occurred within the first 4 days (Figure 2A). After
training, the group-averaged angle discrimination
threshold at Post (mean ± SEM, 3.65° ± 0.16°)
was significantly lower than that at Pre (7.67° ±
0.75°), t(11) = 5.705, padj < 0.001, Cohen’s d = 1.647
(Figure 2B). Meanwhile, the subjects’ discrimination
thresholds in the orientation discrimination task
also significantly decreased in the right visual field
(Pre, 4.15° ± 0.49°; Post, 1.86° ± 0.16°), t(11) =
5.942, padj < 0.001, Cohen’s d = 1.715, and in the left
visual field (Pre, 3.52° ± 0.32°; Post, 1.85° ± 0.11°),
t(11) = 6.228, padj < 0.001, Cohen’s d = 1.798. A
repeated-measures ANOVA showed no significant
difference among the performance improvements in the
three discrimination tasks (angle discrimination task,
48.70%; orientation discrimination task in the right
visual field, 52.54%; orientation discrimination task
in the left visual field, 44.37%), F(2, 22) =1.271, p >
0.05, η2

p = 0.104 (Figure 2C). The Bayesian analyses
also support that the performance improvement in
the angle discrimination task was equivalent to the
improvements in the orientation discrimination task in
the right visual field (BFNOH = 3.054) and in the left
visual field (BFNOH = 3.077). These results demonstrate
that the 7-day configuration training could equally
improve the performance in all three discrimination
tasks.
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Figure 2. Results of Experiment 1. (A) Learning curves for the configuration training group and the element training group.
Discrimination thresholds are plotted as a function of training day. (B) Discrimination thresholds for the angle discrimination task, the
orientation discrimination task in the right visual field, and the orientation discrimination task in the left visual field measured at Pre
and Post. (C) Improvements in angle and orientation discrimination performance for the two training groups at Post, relative to Pre
(***p < 0.001, **p < 0.01, *p < 0.05). Error bars denote 1 SEM across subjects.

We then examined the perceptual learning effects
on the angle and the orientation discrimination
performance in the element training group after 7-day
training of the orientation discrimination task in the
right visual field. During training, subjects’ orientation
discrimination thresholds decreased gradually, and
most of the improvement occurred within the first 4
days (Figure 2A). After training, the group-averaged
orientation discrimination threshold at Post (1.74°
± 0.15°) was significantly lower than that at Pre
(4.03° ± 0.54°), t(11) = 5.182, padj < 0.001, Cohen’s
d = 1.496 (Figure 2B). The discrimination thresholds
of the orientation discrimination task in the left
visual field (Pre, 3.68° ± 0.33°; Post, 2.82° ± 0.29°),
t(11) = 4.365, padj < 0.01, Cohen’s d = 1.260, and the

angle discrimination task also significantly decreased
(Pre, 7.43° ± 0.67°; Post, 5.40° ± 0.40°), t(11) = 3.888,
padj < 0.01, Cohen’s d = 1.123. However, a repeated-
measures ANOVA found a significant main effect
among the improvements in the three discrimination
tasks (angle discrimination task, 24.84%; orientation
discrimination task in the right visual field, 53.72%;
orientation discrimination task in the left visual field,
23.36%), F(2, 22) = 18.799, p < 0.001, η2

p = 0.631
(Figure 2D). Post hoc t-tests showed that the
improvement in the orientation discrimination task in
the right visual field was significantly higher than that
in the angle discrimination task, t(11) = 6.893, padj <
0.001, Cohen’s d = 1.990, and that in the orientation
discrimination task in the left visual field, t(11) = 5.608,
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padj < 0.001, Cohen’s d = 1.619 (Figure 2C).
These results demonstrate that, after 7-day element
training, the trained task exhibited more performance
improvement than the other two untrained tasks, which
is in stark contrast to the complete transfer of the
learning effect in the configuration training group.

To directly evaluate the differences between the
configuration and the element training groups,
we applied mixed-design ANOVAs with task (the
orientation discrimination tasks in the right visual
field and in the left visual field, and the angle
discrimination task) as a within-subject factor and
group (configuration training group and element
training group) as a between-subject factor. At
Pre, no significant group effect was found with the
discrimination thresholds: F(1, 22) = 0.012, p > 0.05
(Figure 2B). However, at Post, anANOVAapplied to the
improvements showed that the main effect of task, F(2,
44) = 15.020, p < 0.001, η2

p = 0.406; the main effect of
group, F(1, 22) = 12.545, p = 0.002, η2

p = 0.363; and the
interaction between task and group, F(2, 44) = 6.547,
p = 0.003, η2

p = 0.229, were all significant. Post
hoc t-tests revealed that the configuration training
group showed significantly larger improvements than
the element training group in both the orientation
discrimination task in the left visual field, t(22) =
3.308, padj = 0.010, Cohen’s d = 1.351, and the angle
discrimination task, t(22) = 3.668, padj = 0.004, Cohen’s
d = 1.498, but not in the orientation discrimination
task in the right visual field, t(22) = 0.235, padj > 0.05,
BFNOH = 2.836) (Figure 2C).

Experiment 2

In Experiment 1, we found that configuration
training led to significant configuration and element
learning effects, and the two learning effects were
comparable. However, the time courses of the
configuration learning and the element learning remain
unclear. Specifically, for the configuration training
group, most of the angle discrimination performance
improvement took place during the first 4 training
days. Therefore, it is possible that subjects in the
configuration training group might improve their angle
discrimination skill (i.e., configuration learning) during
the early training phase, followed by the enhancement
of their orientation discrimination skill (i.e., element
learning) during the late training phase. To investigate
this issue, in Experiment 2 we trained subjects for only
2 days to probe the learning effects in the early training
phase.

For the configuration training group, after the 2-day
training, subjects’ angle discrimination thresholds
significantly decreased (Pre, 7.13° ± 0.52°; Post, 4.92°
± 0.26°), t(11) = 5.127, padj < 0.001, Cohen’s d =
1.480. The orientation discrimination thresholds
also significantly decreased in the right visual field
(Pre, 3.81° ± 0.29°; Post, 2.14° ± 0.11°), t(11) =
7.007, padj < 0.001, Cohen’s d = 2.023, and in the
left visual field (Pre, 3.51° ± 0.36°; Post, 2.01° ±
0.11°), t(11) = 4.673, padj = 0.001, Cohen’s d =
1.349.

For the element training group, subjects’ orientation
discrimination thresholds in the right visual field

Figure 3. Results of Experiment 2 (2-day training); the results of Experiment 1 (7-day training) are presented here for comparison
purposes. (A) Improvements in angle and orientation discrimination performance for the configuration training groups in Experiment
1 and Experiment 2 at Post, relative to Pre. (B) Improvements in angle and orientation discrimination performance for the element
training groups in Experiment 1 and Experiment 2 at Post, relative to Pre (**p < 0.01). Error bars denote 1 SEM across subjects.
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significantly decreased after 2-day training (Pre, 3.68° ±
0.29°; Post, 2.34° ± 0.23°), t(11) = 10.146, padj < 0.001,
Cohen’s d = 2.929. The thresholds also significantly
decreased for the orientation discrimination task in the
left visual field (Pre, 3.48° ± 0.49°; Post, 2.51° ± 0.28°),
t(11) = 2.790, padj = 0.032, Cohen’s d = 0.774, and for
the angle discrimination task (Pre, 7.13° ± 0.63°; Post,
5.29° ± 0.51°), t(11) = 4.083, padj = 0.003, Cohen’s d =
1.179.

To further explore the time course of both
configuration learning and element learning, we applied
mixed-design ANOVAs with task (the orientation
discrimination tasks in the right visual field and in
the left visual field and the angle discrimination task)
as a within-subject factor and training day (2-day
training and 7-day training) as a between-subject factor
(Figure 3A). For the configuration training group, a
significant main effect of training day was observed,
F(1, 22) = 10.990, p = 0.003, η2

p = 0.333; however,
the main effect of task, F(2, 44) = 2.741, p > 0.05,
and the interaction between task and training day,
F(2, 44) = 2.061, p > 0.05, were not significant.
Post hoc t-tests revealed that the improvement in the
angle discrimination task after the 7-day training

was significantly higher than that after the 2-day
training, t(22) = 3.376, padj = 0.009, Cohen’s d =
1.379. Surprisingly, no significant improvement
difference between the 2-day and 7-day training
was found in the two orientation discrimination
tasks (both t < 2.260, padj > 0.05). Note that
Bayesian analyses yielded support for equivalent
improvements in the orientation discrimination
task in the left visual field (BFNOH = 2.123)
but not in the right visual field (BFNOH = 0.459). These
results suggest that the element learning might take
place at an early phase, and even after the element
learning has already saturated the configuration
learning continues.

For the element training groups, a significant main
effect of task, F(2, 44) = 18.085, p < 0.001, η2

p = 0.451,
was observed; however, the main effect of training
day (7-day and 2-day training), F(1, 22) = 1.620, p >
0.05, and the interaction between task and training
day, F(2, 44) = 2.552, p > 0.05, were not significant.
Post hoc t-tests showed that the improvement in the
orientation discrimination task in the right visual
field after 7-day training was significantly higher than
that after 2-day training, t(22) = 3.401, padj = 0.009,

Figure 4. Experimental protocol and results of Experiment 3. Results of Experiment 2 (2-day training) are presented here for
comparison purposes. (A) Experimental protocol. On each training day, subjects were trained with the orientation discrimination task
in the left and right visual fields alternately. At Pre and Post, three tasks were counterbalanced across subjects. (B) Improvements in
angle and orientation discrimination performance for the configuration training group in Experiment 2 and the interleaved element
training group in Experiment 3 at Post, relative to Pre (*p < 0.05). Error bars denote 1 SEM across subjects.
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Cohen’s d = 1.388, but not in either the orientation
discrimination task in the left visual field or the angle
discrimination task (both t < 0.138, padj > 0.05).
Bayesian analyses yielded support for equivalent
improvements in the orientation discrimination
task in the left visual field (BFNOH = 2.878) and
in the angle discrimination task (BFNOH = 2.901).
These results demonstrate that the element learning was
relatively confined to the trained task.

Experiment 3

In Experiment 2, we found that even at an early
phase, the configuration training remarkably improved
the performance in the orientation discrimination task
in both the left and right visual fields. This raises a new
possibility that, if subjects’ orientation discrimination
skills improve, their performance in the angle
discrimination task would improve naturally without
practicing this task. In other words, the integration of
the two elements may not be necessary for the observed
improvement in the angle discrimination task. To this
end, in Experiment 3, we trained subjects to perform
the orientation discrimination task in the left and right
visual fields in alternating blocks that would only recruit
the element learning process. Further, the number of
stimuli presented in each visual field was the same as
that for the configuration training group in Experiment
2. Hence, if the configuration learning is simply due
to the element learning, we would expect that the
interleaved element training could lead to performance
improvement in the angle discrimination task similar to
that for the configuration training group in Experiment
2 (Figure 4A).

After 2-day interleaved element training, subjects’
orientation discrimination thresholds significantly
decreased in both visual fields: right visual field (Pre,
4.12° ± 0.33°; Post, 2.84° ± 0.18°; improvement,
27.63 %), t(11) = 4.141, padj = 0.003, Cohen’s
d = 1.195; left visual field (Pre, 3.97° ± 0.44°; Post,
2.52° ± 0.12°; improvement, 28.36 %), t(11) = 3.150,
padj = 0.014, Cohen’s d = 0.909. Intriguingly, no
significant improvement was found in the angle
discrimination task (Pre, 7.11° ± 0.42°; Post, 6.22° ±
0.49°; improvement, 12.08%), t(11) = 2.335, padj > 0.05,
BFNOH = 1.673.

Compared with the configuration training group in
Experiment 2, no significant improvement difference
was found in the orientation discrimination task in
both visual fields (both t < 2.280, padj > 0.05) (Figure
4B). Note that Bayesian analyses yielded support for
equivalent improvements in the orientation discrim-
ination task in the left visual field (BFNOH = 1.755)
but not in the right visual field (BFNOH = 0.445).
However, the improvement in the angle discrimination

task after the interleaved element training was signifi-
cantly lower than that after the configuration training
in Experiment 2, t(22) = 2.697, padj = 0.039, Cohen’s
d = 1.101. Together, these results demonstrate that
the interleaved element training was not functionally
equivalent to the configuration training, suggesting
an essential role of integration in the configuration
learning.

Discussion

In the current study, we explored the relationship
between perceptual learning of the configuration
and element stimuli. In Experiment 1, we found
that the configuration training equally improved the
perception of the configuration and element stimuli.
Moreover, the improvement for the element stimuli
after the configuration training was equivalent to
that after the element training. In contrast, relative
to the configuration training, the element training
improved the perception of the untrained element
stimulus and the configuration stimulus to a much
lesser extent, revealing an asymmetric transfer pattern
between perceptual learning of the configuration and
element stimuli. Regarding the complete configuration-
to-element transfer, one possible explanation is that
subjects learn to discriminate the element stimuli
after their performance has reached a plateau for
the configuration stimulus. In other words, element
learning might follow configuration learning (Kattner,
Cochrane, Cox, Gorman, & Green, 2017; Shibata et al.,
2017; Yotsumoto, Watanabe, Chang, & Sasaki, 2013).
To examine this possibility, in Experiment 2 we utilized
the same experimental procedure as that of Experiment
1, except that subjects were trained for only 2 days, in
which case configuration learning would not saturate
according to the result of Experiment 1. Surprisingly,
such short training also led to an asymmetric transfer
pattern. As for the weak element-to-configuration
transfer in Experiments 1 and 2, a possible explanation
is that, in the element training, subjects were trained
only in the right visual field. Therefore, in Experiment 3,
subjects underwent element training in both visual fields.
However, even with such training, little improvement in
the perception of the configuration stimulus was found.
Together, these results demonstrate an asymmetric
relationship between perceptual learning of the
configuration and element stimuli and a remarkable
transfer ability of the configuration perceptual
learning.

In the field of perceptual learning, previous studies
suggest that perceptual learning of a visual stimulus
is built on the basis of learning its local elements
(Gölcü & Gilbert, 2009; Nishina, Kawato, & Watanabe,
2009). For example, Gölcü and Gilbert (2009) found
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that transfer can occur between objects with shared
elements, even though one of the objects has never
been trained before. In line with these studies, our study
confirmed the importance of local element learning
in perceptual learning. However, a major difference
between previous studies and ours is that we measured
the transfers of the learning effects between the
high-level configuration stimulus and its local elements.
Rather than being embedded in a configuration, the
element stimuli were tested in isolation. Here, we
demonstrate that training with a configuration stimulus
could improve the discrimination of its elements.
Moreover, we show that element learning, despite its
importance, cannot fully account for configuration
learning. Although subjects showed improvements in
the perception of the element stimuli in both visual
fields, their perception of the configuration stimulus
barely improved.

Our findings give a hint of the underlying processes
of configuration perceptual learning. When faced with
the configuration stimulus, two processes occur in
the visual system. One is identifying the orientation
of each element, usually in early visual cortex.
The other is integrating the two spatially separated
orientations into one unified angle perception. The
integration of element information has been found
to be associated with high-level visual areas (e.g.,
lateral occipital complex) (Kourtzi, Tolias, Altmann,
Augath, & Logothetis, 2003; Stoll et al., 2020) as
well as their feedback connections with low-level
visual areas (e.g., V1) (Fang et al., 2008; Liang,
Gong, Chen, Yan, Li, & Gilbert, 2017; Stoll et
al., 2020). Therefore, the perceptual enhancement
induced by the configuration training could be driven
by learning the element information, learning to
integrate the element information, or both. For the
first hypothesis, if subjects only learn the element
information (Gölcü & Gilbert, 2009; Nishina et al.,
2009), we would predict a complete bidirectional
transfer between the configuration and element stimuli.
Clearly, the results of Experiments 1 and 2 do not
support this hypothesis. The second hypothesis is
that subjects only learn to integrate the element
information in the configuration perceptual learning.
This hypothesis would predict no transfer in either
direction, which is also at odds with our findings of
the asymmetric transfers. In the perceptual learning
literature, a unitary mechanism seems unlikely to
account for all the empirical results (Dosher, Jeter,
Liu, & Lu, 2013; Li, 2016; Maniglia & Seitz, 2018).
Indeed, some recent perceptual learning studies
have identified hybrid mechanisms even in a simple
visual task learning (Ahmadi et al., 2018; Jing et al.,
2021; Xi et al., 2020). Here, our results also support
a hybrid hypothesis (i.e., the third hypothesis) that
configuration perceptual learning incorporates both

element learning and integration learning (or learning
to integrate elements). The element learning supports
the complete configuration-to-element transfer, whereas
the integration learning sets a constraint on the
element-to-configuration transfer. Interestingly, we
also found the asymmetric transfers even when the
configuration learning had not saturated (Experiment
2). This finding provides new insight into the time
courses of the two mechanisms. In particular, the
element learning may develop in companion with
the integration learning in the early phase of the
configuration training.

Compared with other types of visual perceptual
learning, one advantage of the configuration perceptual
learning in our study is its efficiency (i.e., gain more
learning effect with less training time). It has been
a long-standing challenge in perceptual learning to
maximize the efficiency of training paradigm, which
would facilitate practical and clinical applications of
perceptual learning (Huang et al., 2022; Lu, Lin, &
Dosher, 2016). Previous studies have found that the
efficiency of perceptual learning can be improved by
adding pre-stimulus cues (Donovan & Carrasco, 2018;
Donovan, Shen, Tortarolo, Barbot, & Carrasco, 2020),
optimizing daily training amount (Amar-Halpert,
Laor-Maayany, Nemni, Rosenblatt, & Censor, 2017;
Song, Chen, & Fang, 2021), pairing training with
transcranial magnetic/electric stimulation (Contemori,
Trotter, Cottereau, & Maniglia, 2019; He, Yang, Gong,
Bi, & Fang, 2022; Herpich, Melnick, Agosta, Huxlin,
Tadin, & Battelli, 2019; Karim, Schler, Hegner, Friedel,
& Godde, 2006), or taking medicines (Rokem & Silver,
2010). In our study, the configuration training improved
performance equally in all three tasks: the angle
discrimination task and the orientation discrimination
task in the left and right visual fields. That being
said, the configuration training underwent the same
amount of training time as the element training but
acquired much more learning effect. This suggests
that training with configuration stimuli can increase
the efficiency of perceptual learning, an observation
that motivates further research into whether more
complex stimuli (e.g., more elements in training stimuli)
and tasks can induce even more broader learning
effects.

In sum, our findings reveal the asymmetric
relationship between perceptual learning of
the configuration and element stimuli and
provide a promising paradigm to promote the
efficiency of perceptual learning. Future studies
should be carried out to explore the neural
mechanisms underlying the configuration perceptual
learning.

Keywords: visual perceptual learning, configuration,
transfer, plasticity
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