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learning in feature space

Shiqi Shen,1,2,7 Yueling Sun,1,2,7 Jiachen Lu,1,2,7 Chu Li,1,2,7 Qinglin Chen,1,2 Ce Mo,3 Fang Fang,4,5,6

and Xilin Zhang1,2,8,*
SUMMARY

Visual perceptual learning (VPL), experience-induced gains in discriminating visual features, has been
studied extensively and intensively for many years, its profile in feature space, however, remains unclear.
Here, human subjects were trained to perform either a simple low-level feature (grating orientation) or a
complex high-level object (face view) discrimination task over a long-time course. During, immediately af-
ter, and one month after training, all results showed that in feature space VPL in grating orientation
discrimination was a center-surround profile; VPL in face view discrimination, however, was a monotonic
gradient profile. Importantly, these two profiles can be emerged by a deep convolutional neural network
with a modified AlexNet consisted of 7 and 12 layers, respectively. Altogether, our study reveals for the
first time a feature hierarchy-dependent profile of VPL in feature space, placing a necessary constraint on
our understanding of the neural computation of VPL.

INTRODUCTION

Visual perceptual learning (VPL), a long-term improvement in visual performance through practices or trainings, has been demonstrated in the

detection or discrimination of various stimuli, ranging from simple low-level features to complex high-level objects.1–12 One of the central

questions in VPL is its specificity and generalization (transfer), which have profound implications for the underlying neural mechanisms.13–15

Indeed, the specificity and generalization has inspired variousmodels and theories that interpret VPL as a result from training not only induced

tuning curve plasticity of neurons in the task-relevant sensory areas16–22 but also improved readout of sensory signals through response re-

weighting within either visual cortex23–27 or higher decision areas.28–31 It is likely, therefore, that VPL reflects plasticity in a complex set of brain

networks and may occur at multiple levels (for reviews2,7,10).

The specificity of what is learned is a fundamental and prominent property of VPL, in which learned improvements are confined to the

particular trained visual attributes, such as the orientation of the trained stimulus.18,19,27,32–45 However, a number of previous studies have

also indicated that VPL can significantly, and almost completely, generalize to the untrained visual attributes and this generalization depends

on several factors,2,46 such as the difficulty32,47–49 and the processing level50 of the task, the duration51 and the state of induced adaptation52 of

the training, the precision demand53 and the exact procedure (i.e., the double-training paradigm48,54,55) of the transfer task, the categoriza-

tion between the trained and untrained stimuli,56 and the feature hierarchy (simple low-level versus complex high-level) of the trained stim-

ulus.1,42,57 Although for several decades VPL has been regarded as a distinct format of learning as its specificity, the generalization of VPL is

more important in practical applications.

Previous literature on visual attention have indicated a structured manner regarding how attention demarcates the target of interest from

various distractors, either a center-surround profile58,59 or a monotonic gradient profile.60,61 Intriguingly, VPL faces the same situation that

demarcates the trained visual attribute (specificity) from various untrained visual attributes (generalization), and therefore, an important ques-

tion in this regard is whether and how these profiles are at play within the VPL. This issue is particularly important since such learning profile in

feature space could offer us a unique opportunity to give insight into the whole picture of VPL, thereby furthering our understanding of the

neural mechanism underlying VPL and how the visual system adapts to its changing environment. However, the specificity and generalization

of VPL are usually assessed by comparing the trained condition versus another or a few untrained conditions, we therefore still know little

about the profile of VPL in feature space.
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Figure 1. Stimuli and Psychophysical Protocol

(A) Exemplar gratings (up) and faces (bottom) in the grating orientation discrimination (GOD) and face view discrimination (FVD) task, respectively. For both tasks,

there were six possible distances in feature space between the trained and test stimuli, ranging from D0� through D90�, with a step size of 18�.
(B) Schematic description of a two-alternative forced-choice (2-AFC) trial in a QUEST staircase for measuring grating orientation (up) or face view (bottom)

discrimination thresholds.

(C) Experimental protocol. Both GOD and FVD tasks consisted of six phases – pre-training test (Pre), discrimination-training 1 (Training1), mid-training test (Mid),

discrimination-training 2 (Training2), post-training test 1 (Post1), and post-training test 2 (Post2). Pre, Mid, Post1, and Post2 took place on the days before, during,

immediately after and one month after training, respectively. During the two training phases (Training1 and Training2), each subject underwent six daily training

sessions.
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Besides, deep convolutional neural networks (DCNN) have shown impressive correspondences to various behaviors and neural responses

from early to higher visual areas.62,63 This brain-like hierarchical system provides new ways of studying VPL from behavior to physiology.64

Indeed, using various artificial neural networks, previous studies have reproduced both experimental and theoretical analyses that resembled

predictions of the reverse hierarchy theory65 of VPL,66 replicated relative performances of training conditionswithin a wide range of behavioral

data,67 and emerged both the specificity68 and generalization69 of VPL. To date, whether and how the DCNNs can appropriately model the

underlying profile of VPL remain unexplored.

To address these issues, here human subjects were trained to perform either a simple low-level feature (grating orientation) or a complex

high-level object (face view) discrimination task over a long-time course. For both tasks, we manipulated the distance in feature space

between the trained and test stimuli, ranging from D0� through D90� with a step size of 18�, to measure the profile of VPL (Figure 1A).

Unexpectedly, during, immediately after and one month after training, all results confirmed that in feature space, VPL in grating orientation

discrimination was a center-surround profile (Figure 2); VPL in face view discrimination, however, was a monotonic gradient profile (Figure 3).

More importantly, both profiles can be reproduced by DCNNs qualitatively (Figure 4). Our results reveal for the first time a visual feature

hierarchy-dependent profile of VPL in feature space, thereby placing a necessary constraint on our understanding of the neural computation

underlying VPL.

RESULTS

Subjects in our study were trained to perform either the grating orientation discrimination (GOD) or face view discrimination (FVD) task. Each

task consisted of six possible distances in feature space between the trained and test stimuli, ranging from D0� throughD90�, with a step size

of 18� (Figure 1A). For both tasks, there were six phases – pre-training test (Pre), discrimination-training 1 (Training1), mid-training test (Mid),

discrimination-training 2 (Training2), post-training test 1 (Post1), and post-training test 2 (Post2). Pre, Mid, Post1, and Post2 took place on the

days before, during, immediately after and one month after training, respectively (Figure 1C). During the two training phases (Training1 and
2 iScience 27, 109128, March 15, 2024
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Figure 2. Results of the GOD Task

(A) Learning curve. Grating orientation discrimination thresholds are plotted as a function of training day in both Training1 and Training2. Error bars indicate 1

SEM calculated across subjects.

(B) Grating orientation discrimination thresholds for each distance (D0�, D18�,D36�,D54�,D72�, and D90�) at Pre, Mid, Post1, and Post2. Error bars denote 1 SEM

calculated across subjects and colored dots denote the data from each subject.

(C) The learning effect of each distance at Mid, Post1, and Post2, and the best fitting Gaussian and Mexican-hat functions to these learning effects across

distances. G, Gaussian model; M, Mexican-hat model. Error bars indicate 1 SEM calculated across subjects.

(D) R2 of the best fitting Gaussian andMexican-hat functions for individual subjects at Mid, Post1, and Post2. During each test, most of the dots are located in the

orange zone, demonstrating that the Mexican-hat model was favored over the Gaussian model.
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Training2), each subject underwent six daily training sessions and a daily session consisted of 30 QUEST staircases70 of 40 trials. In a trial, two

targets (q� and q� G Dq�) were presented sequentially and subjects were asked to make a two-alternative forced-choice (2AFC) judgment of

the orientation in GOD task or the view in FVD task of the second target relative to the first one (left or right), and received auditory feedback if

their response was incorrect (Figure 1B). The QUEST staircase was used to control the varied Dq� adaptively for estimating subjects’ discrim-

ination thresholds (75% correct). Throughout the training course, their thresholds gradually decreased and saturated after the Training 2 in

both tasks (Figures 2A and 3A).

For both GOD and FVD tasks, during the four test phases (Pre, Mid, Post1, and Post2), we measured discrimination thresholds for each dis-

tance (D0�, D18�, D36�, D54�, D72�, and D90�) and each subject, similar to the training phase. Their discrimination thresholds are shown in

Figures 2A and 3A, and were submitted to a repeated-measures ANOVA with test (Pre, Mid, Post1, and Post2) and distance (D0�, D18�,
D36�, D54�, D72�, and D90�) as within-subject factors. For the GOD task, the main effect of test (F3, 42 = 58.444, p < 0.001, partial eta-squared,

hp
2 = 0.807) and the interaction between these two factors (F15, 210 = 6.989, p < 0.001,h p

2 = 0.333) were significant, but themain effect of distance

was not significant (F5, 70 = 1.132, p = 0.349, h p
2 = 0.075). For the FVD task, themain effect of test (F3, 42 = 31.219, p < 0.001, hp

2 = 0.690), themain

effect of distance (F5, 70 = 12.834, p < 0.001, h p
2 = 0.478), and the interaction between these two factors (F15, 210 = 2.847, p = 0.014, h p

2 = 0.169)
iScience 27, 109128, March 15, 2024 3
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Figure 3. Results of the FVD Task

(A) Learning curve. Face view discrimination thresholds are plotted as a function of training day in both Training1 and Training2. Error bars indicate 1 SEM

calculated across subjects.

(B) Face view discrimination thresholds for each distance (D0�,D18�,D36�,D54�,D72�, andD90�) at Pre,Mid, Post1, and Post2. Error bars denote 1 SEM calculated

across subjects and colored dots denote the data from each subject.

(C) The learning effect of each distance at Mid, Post1, and Post2, and the best fitting Gaussian and Mexican-hat functions to these learning effects across

distances. G, Gaussian model; M, Mexican-hat model. Error bars indicate 1 SEM calculated across subjects.

(D) R2 of the best fitting Gaussian andMexican-hat functions for individual subjects at Mid, Post1, and Post2. During each test, most of the dots are located in the

green zone, demonstrating that the Gaussian model was favored over the Mexican-hat model.
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were all significant. To compare the learning effects among each distance, we further calculated the percent improvements in discrimination

performance for each distance at Mid, Post1, and Post2, relative to Pre (Figures 2C and 3C). Subjects’ performance improvement (i.e., the

learning effect) for each distance was calculated as follows:

Learning effect =
Thresholdpre � Thresholdpost

Thresholdpre
� 100%

where Thresholdpre is the measured discrimination thresholds at Pre; Thresholdpost could be the measured discrimination thresholds at Mid,

Post1, or Post2. Results showed that all these learning effects were significantly above 0 in both GOD (Mid: all t14 > 2.402, p < 0.031, Cohen’s

d > 1.240; Post1: all t14 > 3.472, p < 0.004, Cohen’s d > 1.793; Post2: all t14 > 3.212, p < 0.006, Cohen’s d > 1.659) and FVD (Mid: all t14 > 2.326,

p < 0.036, Cohen’s d > 1.201; Post1: all t14 > 3.373, p < 0.005, Cohen’s d > 1.742; Post2: all t14 > 2.836, p < 0.013, Cohen’s d > 1.465) tasks. A

further repeated measures ANOVA with distance (D0�, D18�, D36�, D54�, D72�, and D90�) as a within-subjects factor and post hoc paired t

tests (Bonferroni-corrected) indicated that the learning effect of trained stimulus (D0�) was significantly larger than those of other distances

in both GOD (Mid: all t14 > 4.705, p < 0.005, Cohen’s d > 2.430, except for D0� vs. D18�: t14 = 2.896, p = 0.176, Cohen’s d = 1.495; Post1: all
4 iScience 27, 109128, March 15, 2024
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Figure 4. Results of DCNN

(A) Model structure and stimulus examples for GOD (Left, AlexNet-GOD) and FVD (Right, AlexNet-FVD) tasks. AlexNet-GOD consisted of 6 convolutional layers

(conv0-conv5) and 1 fully connected layer (fc), whereas AlexNet-FVD consisted of 9 conv layers (conv0-conv8) and 3 FC layers (fc1-fc3).

(B) The accuracy of each distance (D0�, D18�, D36�, D54�, D72�, and D90�) during the pre- and post-training for the GOD (Left) and FVD (Right) tasks. Error bars

denote 1 SEM calculated across subjects and colored dots denote the data from each subject.

(C) Left: The training effect (i.e., the ACCdifference between pre- and post-training) of each distance for theGOD task, and the best fittingGaussian andMexican-

hat functions to these training effects across distances. G, Gaussian model; M, Mexican-hat model. Error bars denote 1 SEM calculated across subjects. Right: R2

of the best fitting Gaussian andMexican-hat functions for individual data. Almost all the dots are located in the orange zone, demonstrating that theMexican-hat

model was favored over the Gaussian model.

(D) DCNN for the FVD task, see caption for (C) for a description of each type of graph. Almost all the dots are located in the green zone, demonstrating that the

Gaussian model was favored over the Mexican-hat model. Error bars indicate 1 SEM calculated across fifteen simulation data.
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t14 > 3.608, p < 0.043, Cohen’s d > 1.863; Post2: all t14 > 3.522, p < 0.051, Cohen’s d > 1.819) and FVD (Mid: all t14 > 4.387, p < 0.009, Cohen’s

d > 2.265; Post1: all t14 > 4.409, p < 0.009, Cohen’s d > 2.277; Post2: all t14 > 4.029, p < 0.019, Cohen’s d > 2.081, except for D0� vs. D54�:
t14 = 2.972, p = 0.152, Cohen’s d = 1.545) tasks. These results supported both the specificity and generalization of VPL, whereby the learning

effect was the greatest for the trained stimulus and significantly transferred to the other untrained stimuli, respectively.

Gaussian and Mexican-hat models fitting and comparison

To further assess the shape of these learning effects, we fitted a monotonic model and a nonmonotonic model to the average learning effect

across distances in bothGODand FVD tasks. Themonotonic and nonmonotonicmodels were implemented as theGaussian andMexican-hat

functions, respectively.61 To compare these two models to our data, we first computed the Akaike information criterion (AIC)71 and Bayesian

information criterion (BIC)72 with the assumption of a normal error distribution. Then, we calculated the Likelihood ratio (LR) and Bayes factor

(BF) of the Gaussian model over the Mexican-hat model based on AIC73 and BIC74 approximation, respectively. Results showed that, at Mid,

Post1, and Post2, all the LR/BFs were smaller than 1 (Table 1, left) and therefore favored the Mexican-hat model over the Gaussian model for

the GOD task (Figure 2C). Notably, we also conducted similar model comparisons for each subject’s data and found that the Mexican-hat

model was favored over the Gaussian model in 13, 10, and 12 of 15 subjects, at Mid, Post1, and Post2, respectively (Figure 2D). For the

FVD task, however, all the LR/BFs were larger than 1 (Table 1, right) and therefore favored the Gaussian model over the Mexican-hat model
iScience 27, 109128, March 15, 2024 5



Table 1. LR/BF of model comparisons

GOD FVD

Mid Post1 Post2 Mid Post1 Post2

G over M 8.83 3 10�4 8.05 3 10�2 3.80 3 10�2 2.833103 3.113109 1.183104

G, Gaussian model; M, Mexican-hat model; GOD, grating orientation discrimination; FVD, face view discrimination.
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(Figure 3C). The model comparison based on fitting individual data also demonstrated that the Gaussian model was favored over the

Mexican-hat model in 10, 9, and 9 of 15 subjects, at Mid, Post1, and Post2, respectively (Figure 3D). Together, these results constituted strong

evidence for the center-surround and monotonic gradient profiles of VPL in simple low-level feature and complex high-level object discrim-

inations, respectively. However, it could be argued that the feature hierarchy-dependent profile of VPL might be explained by pre-existing

differences that were equalized through learning between GOD and FVD tasks. To address this issue, for the Pre, using a mixed ANOVA with

task (GOD and FVD) as the between-subjects factor and distance (D0�, D18�, D36�, D54�, D72�, and D90�) as the within-subjects factor, we

compared the discrimination threshold of each distance between two tasks. Results argue against this explanation by showing that the

main effect of distance (F5, 140 = 2.198, p = 0.069, h p
2 = 0.073) and the interaction (F5, 140 = 2.406, p = 0.050, h p

2 = 0.079) between these

two factors was (marginally) significant, but the main effect of task (F1, 28 = 0.479, p = 0.495, h p
2 = 0.017) was extremely insignificant. Post

hoc paired t tests (Bonferroni-corrected) further showed that the discrimination threshold of GOD task was significantly higher than that of

FVD task for D0� (t28 = 3.141, p = 0.004, Cohen’s d = 1.187), but not for D18�, D36�, D54�, D72�, or D90� (all t28 < 0.735, p > 0.469, Cohen’s

d < 0.278). Note that this difference in D0� could have an influence on the peak (trained stimulus) difference of VPL between two tasks,

but not on their profile differences.

Deep convolutional neural network for the profile of VPL

Our results demonstrate the center-surround and monotonic gradient profiles of VPL in simple low-level feature and complex high-level ob-

ject discriminations, respectively, yet it remains unclear whether DCNN models could emerge these profiles. Here we trained two DCNN

models: AlexNet-GOD and AlexNet-FVD, modified from AlexNet68,75 to perform our GOD and FVD tasks, respectively. AlexNet-GOD con-

sisted of 6 convolutional (conv) layers and 1 fully connected (fc) layer, whereas AlexNet-FVD consisted of 9 conv layers and 3 fc layers (Figure 4).

Note that these architects were built to mimic our hypothesis of the visual pathways involved in these two tasks. During the training, layers 2–6

of both the AlexNet-GOD and AlexNet-FVD are initialized with the weights of the first 5 layers of the pre-trained AlexNet, and the other

weights are initialized randomly. The last layer of each network was trained to capture the difference between the target and reference

and finally obtain the classification by softmax, to model decision making in our 2AFC paradigm (Figure 1B), in which subjects were asked

to make a 2AFC judgment of the orientation in GOD task or the view in FVD task of the second stimulus (target) relative to the first one (refer-

ence). Parallel to our psychophysical experiments, both the AlexNet-GOD and AlexNet-FVD were independently trained 15 times, and for

each distance (D0�, D18�, D36�, D54�, D72�, and D90�), the training effect was defined as the accuracy difference between the pre- and

post-training. Similar to our psychophysical results (Table 1), the LR/BF of the AlexNet-GOD training (Gaussian model over Mexican-hat

model: 5.7293 10�1) was smaller than 1, and therefore favored the Mexican-hat model over the Gaussian model (Figure 4C, left). The model

comparison based on fitting individual data advocated that the Mexican-hat model was favored over the Gaussian model in 13 of 15 training

data (Figure 4C, right). Besides, across subjects, a non-parametricWilcoxon signed-rank test was conducted to compare the R2 of twomodels,

and results significantly advocated the Mexican-hat model over the Gaussian model (z = 2.215, p = 0.013, r = 0.572). Conversely, the LR/BF of

the AlexNet-FVD training (Gaussianmodel overMexican-hatmodel: 1.2503 108) was larger than 1, and therefore favored theGaussianmodel

over the Mexican-hat model (Figure 4D, left). The model comparison based on fitting individual data demonstrated that the Gaussian model

was favored over the Mexican-hat model in 14 of 15 training data (Figure 4D, right). Similarly, the non-parametric Wilcoxon signed-rank test

again advocated that the Gaussian model was significantly favored over the Mexican-hat model (z = 2.385, p = 0.008, r = 0.616). More impor-

tantly, to further conform the effectivity of our constructed DCNNmodels (AlexNet-GOD and AlexNet-FVD), we performed cross-validation

across tasks, i.e., AlexNet-GOD and AlexNet-FVD for face views and grating orientations, respectively. Results showed that, across subjects,

for AlexNet-GOD of face views, there was no significant difference in the R2 between Gaussian andMexican-hat models (non-parametric Wil-

coxon signed-rank test: z = 0.284, p = 0.402, r = 0.073); for AlexNet-FVD of grating orientations, the Gaussian model was significantly favored

over theMexican-hatmodel (non-parametricWilcoxon signed-rank test: z = 2.783, p = 0.002, r = 0.719), further supporting our DCNNmodels’

potential to perform brain-like representation. Together, these results further conform the center-surround and monotonic gradient profiles

of VPL in simple low-level feature and complex high-level object discriminations, respectively.

DISCUSSION

The present results reveal a feature hierarchy-dependent (simple low-level versus complex high-level) profile of VPL in feature space. Specif-

ically, we found that VPL in grating orientation (simple low-level) discrimination was a center-surround profile, with the maximum learning

effect of the trained-orientation and suppressed learning effects of orientations similar to the trained orientation relative to orientations

more distinct from it (Figure 2C). VPL in face view (complex high-level) discrimination, however, was a monotonic gradient profile with the
6 iScience 27, 109128, March 15, 2024
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Figure 5. Schematic Illustration for Tuning Curve Plasticity of Sensory Neurons

Illustration of the Gain & tuning hypothesis (left) and the Gain-only hypothesis (right). The Gain & tuning hypothesis postulates that VPL simultaneously sharpens

the tuning and increases the gain of individual neurons (thick curves) toward the trained feature, which results in a center-surround population response profile

(black curve) centered at the trained feature. The Gain-only hypothesis postulates that VPL only increases the gain of individual neurons (thick curves) toward the

trained feature, which results in a monotonic gradient population response profile (black curve) centered at the trained feature.
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learning effect falling off gradually as the rotated similarity from the trained view (Figure 3C). For both the grating orientation and face view

tasks, given the consistent results across during, immediately after and one month after training, their distinct profiles thus cannot be ex-

plained by either the undertraining or overtraining of VPL, and showed a classical persistency. However, it might be argued that their distinct

profiles could be derived from an attentional selection mechanism by which aspects of information is prioritized over others thereby guiding

VPL and behavior. That is to say, subjects may naturally pay different attention to various test stimuli based on their feature similarities away

from the trained stimuli, thus yielding various profiles of VPL in feature space. Indeed, previous studies have suggested that attention plays a

critical role in both the specificity and generalization of VPL4,10,12,65,76–88 and could display as either a center-surround profile58,59 or a mono-

tonic gradient profile.60,61 However, it is important to note that, in our study, for each test stimulus, subjects performed the same discrimina-

tion task at threshold, measured by the QUEST staircase procedure (75% correct),70 which could maximally (although not completely) control

the difference in task difficulty or, presumably, attention, among the distances. In addition, in our study, the gratings were varied in 2D space,

whereas the faces were generated by projecting 3D models rotated in depth into a 2D plane (Figure 1A). Thus, one could argue that the

distinct profile of VPL in grating orientation and face view discriminations was derived from the difference between 2D and 3D rather than

that between simple low-level and complex high-level features. In other words, our studymay not demonstrate a feature hierarchy-dependent

profile of VPL, but instead, it reveals the distinct profile of VPL between 2D and 3D. To address this argument, we carried out a supplemental

experiment (n =10), which were identical to the FVD experiment except for using the wire-like objects89 (Figure S1). The wire-like objects were

constructed using very simple bars and generated by projecting 3D models rotated in depth into a 2D plane also, thus offering an excellent

opportunity to separate the influence on the profile of VPL between feature hierarchy and feature dimensionality. If the profile of VPL is modu-

lated by feature hierarchies, then the profile of wire-like object learning would similar with that of the grating orientation learning (i.e., the

center-surround profile); however, if the profile of VPL is modulated by feature dimensionalities, then the profile of wire-like object learning

would similar with that of the face view learning (i.e., the monotonic gradient profile). Our results argue against the feature dimensionality

explanation by showing a center-surround profile of VPL for the wire-like object.

The center-surround profile of VPL evident here provides the first behavioral evidence supporting that VPL of grating orientation could

involve the simultaneous operation of neural enhancement and neural suppression in feature space that may optimize internal noise reduc-

tion during VPL.2,24,25 That is, the center-surround profile represents an activity distribution in orientation space that is optimal to demarcate

the trained from untrained orientations, specifically attenuating inputs from nearby distractors that would be at the largest risk to confuse

trained orientation discrimination processes. How does VPL induce an inhibitory zone surrounding the orientation of the trained grating?

We proposed that this center-surround profile could be derived from simultaneously increasing the gain and sharpening the tuning of neu-

rons toward the trained orientation (Gain & tuning hypothesis, Figure 5, left). Although speculative, our hypothesis is consistent with a large

number of previous studies and theories that interpret VPL as a result of training induced tuning curve plasticity of neurons in the task-relevant

sensory areas.16–22,90–92 More importantly, these hypothesized changes – amplification and sharpening of tuning curves – are also consistent

with previous neurophysiological20,79,90,93,94 studies, which have reported that the tuning curves in early and midlevel visual areas, such as V1

and V4, are sharpened and amplifiedduring the VPL of orientation. Given those studies have identified amplification and sharpening of tuning

curves as the neural basis of VPL,17,21,92 we thus believed that the center-surround profile of VPL in orientation space could also be accounted

by this same mechanism.

For the face view discrimination, however, we proposed that its monotonic gradient profile could be accounted by the gain enhancement

of neurons toward the trained view only, i.e., the amplification of tuning curves (Gain-only hypothesis, Figure 5, right). Notably, although local

features in faces could provide more or less information about face view, VPL might be more reliable to extract the view from the configural

information, especially when the face views were randomly presented in a small area.14,35,95 We thus believed that the face view training in our

study improved the ability of computing face view from the configural information of face views, rather than the configural information itself or

face parts. Indeed, previous studies have demonstrated that face view learning takes place at cortical areas containing neurons sensitive to

face view but tolerant to face size, local information, position, and identity changes.95 Such neurons have been indicated in monkey inferior

temporal96 and superior temporal sulcus (STS)97 areas, as well as human fusiform face area, occipital face area, and STS.98 Intriguingly, several
iScience 27, 109128, March 15, 2024 7
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neurophysiological99 and brain imaging35,100,101 studies indeed found that face learning significantly enhanced neuronal responses in these

areas. More importantly, the monotonic tuning functions of face views in these areas have also been demonstrated in previous neurophys-

iological97,102 and brain imaging103,104 studies, as well as the artificial neural network.105 Compared to VPL of grating orientation, which in-

volves the simultaneous operation of neural enhancement and neural suppression in feature space, face view training is a simple monotonic

gradient that contains an excitatory peak but without a narrow inhibitory zone in view space.We speculate that this mannermay be optimal to

transfer the learning effect from the trained view to untrained views, specifically for inputs from nearby of the trained view. Crucially, our spec-

ulation has been supported by previous studies. Parallel to low-level vision, the effect of face training was also specific to the trained set of

faces but showed a higher degree of generalization than low-level vision, which is in accordance with the low-level feature-invariant face rep-

resentation in high-level visual cortex.1,95,101,106–108

Although we proposed that the feature hierarchy-dependent profile of VPL could be accounted by distinct tuning curve plasticity of sen-

sory neurons (Figure 5), on the one hand, lacking directly evidence with neurophysiological techniques or ultrahigh field fMRI; on the other

hand, we cannot deny a potential contribution from other cognitive processes, such as decision, action selection, top-down task relevance,

and processing of feedback. Indeed, many studies and models have suggested that VPL, despite the feature hierarchy (simple low-level

versus complex high-level) of the trained stimuli, is a complex process that occurs within a complex set of brain networks and might be

the result of plasticity at multiple processing levels.2,5,7,10,65 In particular, previous studies have supported that the training-induced improve-

ment of the readout for sensory signals through response reweighting within either sensory cortex23–27 or higher decision areas28–31,109 also

plays a key role in VPL. Further work is thus needed to examine how the profile of VPL in feature space is constrained by these response re-

weighting changes, as well as to parse the relative contributions between tuning curve plasticity of sensory neurons and response reweighting

changes to various potential profiles of VPL.

Additionally, the emerged distinct profile of VPL for grating orientation and face view discriminations in the pretrained AlexNet with six

(high representational-similarity to early visual areas) and nine (high representational-similarity to object/face areas) layers, respectively, is not

only in line with previous studies and theories that interpret VPL as a result of training induced tuning curve plasticity of neurons in the task-

relevant sensory areas,16–22,90,91 but also adds strong evidence supporting DCNNs’ potential to perform human-like representation, such as

the specificity68 and generalization69 of VPL, visual hierarchical coding,110 and face processing.111 Although these similarities betweenDCNNs

and humans were mostly qualitative, the DCNN can provide new ways of studying VPL from behavior to physiology, serving as a test bed for

various theories and assisting in generating predictions for physiological studies.

Ultimately, the present study opens several questions: First, VPL has been documented in virtually all kinds of tasks at different levels of

visual analysis. It is thus worthwhile to address whether our conclusion can be generalized to other visual stimuli, such as contrast, spatial fre-

quency, phase, acuity, color, and motion direction for the simple low-level features, and biological motion, natural images, shapes, and ob-

jects for complex high-level stimuli. In addition, perceptual learning is known to occur in not only the vision domain but also other sensory

modalities, including audition, touch, smell, taste, and multimodal combinations.2,5,7,10,12 Revealing their profiles could pave the way for a

better practical application of perceptual learning in the education, rehabilitation of patients, and training of expertise. Second, although

numerous studies and models have demonstrated that VPL is also specific to the trained retinal location,2,5,7,13,18,19,112 previous studies

have employed the double training technique55,113 or increasing the variability of task-irrelevant features69 to enable VPL transfer to new

retinal locations, and further studies should therefore, reveal this spatial profile of VPL and how its spatial and feature-spatial profiles inter-

actively shape our learning of the world. Third, stimuli we see in real life are often in a crowded environment or embedded in external noise,

while subjects in our study were presented with isolated and noiseless stimuli. Dosher and Lu2,24,25 have suggested that VPL mechanism re-

flects a combination of external noise exclusion and internal noise reduction. Previous studies have indicated that they are two independent

processes114 and may have distinct neural mechanisms for plasticity in the brain.115 Future studies comparing the profile of VPL with and

without external noise would help to improve our understanding of the VPL as a whole. Finally, the reverse hierarchy theory65 and correspond-

ing studies32,52 have previously put forward that the relative degree of specificity and transfer of VPL depends on task precision. Easier tasks

may be learned on the basis of neurons in the higher order visual cortex, resulting in a strong generalization, whereas difficult tasks require

high-precision information to be available in early visual areas and thus show a strong specificity. Further work is needed to address how task

precision shapes the profile of VPL for both the simple low-level and complex high-level stimuli.

In sum, our study provides, to the best of our knowledge, the first evidence for a feature hierarchy-dependent (simple low-level versus

complex high-level) profile of VPL in feature space, thereby furthering our understanding of the relationship between its specificity and gener-

alization, and how they mutually inspire various models and theories for VPL in the literature.
Limitations of the study

First, there were several differences in experimental design between GOD and FVD tasks, i.e., phase randomization across gratings rather than

faces; retinotopic location and size randomization across faces rather than gratings (Figure 1B). Although these designs closely followedprevious

VPL studies using gratings45,55,56,83,93,113 and faces,1,35,95,100,101 respectively, we cannot deny a potential contamination by discrepancies between

two tasks in their distinct profiles of VPL. Second, the profile of VPL, either center-surround ormonotonic gradient, in our study was proposed by

the symmetric shape. For each distance, the data of test stimuli was deviated from the trained stimulus either clockwise or counterclockwise and

either left or right rotations of GOD and FVD tasks, respectively, was the same, lacking separate measurements to examine the asymmetrical

profile of VPL. Third, the DCNNmodels in our study were modified from AlexNet75 but did not know whether these models can be constructed

from other classic baselines, such as ResNet,116 GoogleNet,117 and VGG16.118 Finally, the feature hierarchy-dependent profile of VPL evident
8 iScience 27, 109128, March 15, 2024
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here derive mainly from psychophysics and artificial neural networks, lacking directly evidence with neurophysiological or brain imaging

techniques.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

A total of 30 human subjects (12 male, 19–26 years old) were involved in the study. Half of them participated in the grating orientation discrim-

ination (GOD) task, and the other half participated in the face view discrimination (FVD) task. All subjects were naı̈ve to the purpose of the

study and had never participated in any perceptual learning experiment before. They were right-handed, reported normal or corrected-

to-normal vision, and had no known neurological or visual disorders. They gave written, informed consent, and our procedures and protocols

were approved by the human subjects review committee of School of Psychology at South China Normal University.

METHOD DETAILS

Apparatus

Visual stimuli were displayed on an IIYAMA color graphic monitor (model: HM204DT; refresh rate: 60 Hz; resolution: 1,280 3 1,024; size: 22

inches) at a viewing distance of 57 cm. Subjects’ head position was stabilized using a chin rest. A white fixation cross was always present at the

center of the monitor.

Stimuli

During the grating orientation discrimination (GOD) task, the trained grating orientation (q�) for each subject was chosen randomly from 0� to
180�. The 6 test gratings were 0�, 18�, 36�, 54�, 72�, and 90� deviated from the trained orientation, either clockwise or counterclockwise
iScience 27, 109128, March 15, 2024 13
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(hereafter referred to as distance in orientation spaceD0�,D18�,D36�,D54�,D72�, andD90�). All gratings were set at 2.5� diameter, 4 cycles/�,
and 50% contrast, with the phase randomized for every presentation (Figure 1A). During the face view discrimination (FVD) task, all three-

dimensional (3D) face models were generated by FaceGen Modeler 3.4 (http://www.facegen.com/). No hair was rendered and the value

of texture gamma correction was set to 2.0. Face stimuli (extended 3 � 3 3 � of visual angle) were generated by projecting a 3D face model

with variant in-depth rotation angles onto the monitor plane with the front view (0�) as the initial position. Both left and right rotations were

executed with a step size of 0.2�, which was used to generate a total of 1,501 face views from -150� (left tilted) to +150� (right tilted). For each
subject, one of the face views (q�) was randomly selected for training, and other 6 face views for testing, which were 0�, 18�, 36�, 54�, 72�, and
90� deviated from the trained face view (q�), either left or right rotations (hereafter referred to as distance in view spaceD0�, D18�, D36�, D54�,
D72�, and D90�, parallel to GOD task, Figure 1A) to ensure them were within the range from -150� (left tilted) to +150� (right tilted).
Procedure

BothGODand FVD tasks consisted of six phases – pre-training test (Pre), discrimination-training 1 (Training1), mid-training test (Mid), discrim-

ination-training 2 (Training2), post-training test 1 (Post1), and post-training test 2 (Post2). Pre, Mid, Post1, and Post2 took place on the days

before, during, immediately after and one month after training, respectively (Figure 1C).

For both GOD and FVD tasks, during the two training phases (Training1 and Training2), each subject underwent six daily training sessions

and a daily session (about 1 hour) consisted of 30 QUEST staircases70 of 40 trials. In a trial, two targets (q� and q� G Dq�) were each presented

for 200-ms and separated by a 600-ms blank interval (Figure 1D), and their temporal order was randomized. Subjects were asked to make a

two-alternative forced-choice (2AFC) judgment of the orientation in GOD task or the view in FVD task of the second target relative to the first

one (left or right), and received auditory feedback if their response was incorrect. TheDq� varied trial by trial and was controlled by theQUEST

staircase to estimate subjects’ discrimination thresholds (75% correct). To measure the time course of the training effect (learning curve),

discrimination thresholds from 25 staircases in a daily training session were averaged, and then plotted as a function of training day. During

the four test phases (Pre, Mid, Post1, and Post2), we measured discrimination thresholds in the each task for each distance (D0�, D18�, D36�,
D54�, D72�, and D90�) and each subject. Each test phase consisted of 48 QUEST staircases of 40 trials: 8 QUEST staircases (same as above)

were completed for each distance and the order of six distances was counterbalanced within individual subjects. Discrimination thresholds

from the 8 staircases for each distance were averaged as a measure of subjects’ discrimination performance. Subjects’ performance improve-

ment (i.e., the learning effect) for each distance was calculated as follows:

Learning effect =
Thresholdpre � Thresholdpost

Thresholdpre
� 100%

where Thresholdpre is the measured discrimination thresholds at Pre; Thresholdpost could be the measured discrimination thresholds at Mid,

Post1, or Post2. Differently, for the GOD task, the two sequentially presented gratings were always in the fovea; whereas for the FVD task, the

spatial positions of two sequentially presented faces were randomly distributed within a 6.5 � 3 6.5 � area whose center was coincident with

the fixation point, with a constraint that these two faces were separated by at least 1.2� of visual angle.
QUANTIFICATION AND STATISTICAL ANALYSIS

Gaussian and Mexican-hat models fitting and comparison

During bothGODand FVD tasks, we fitted amonotonicmodel and a non-monotonicmodel to the learning effect for each subject. Themono-

tonic and non-monotonic models were implemented as the Gaussian and Mexican-hat functions, respectively,61 as follows:

Gaussian function : y = y0+
2A

w
ffiffiffiffiffiffi
2p

p e
� 2

�x
w

�2
Mexican � hat function : y =
2H

ffiffiffiffiffiffiffi
3m

p
p

1

4

e� x2

2m2

�
1 � x2

m2

�
+ y1

where y is the learning effect, x is the distance in feature space between the trained and test stimuli (D0�,D18�,D36�,D54�,D72�, andD90�);w,
A, and y0 are the three parameters controlling the shape of the Gaussian function;m, H, and y1 are the three free parameters controlling the

shape of the Mexican-hat function. To compare these two models to our data, we first computed the Akaike information criterion (AIC)71 and

Bayesian information criterion (BIC),72 with the assumption of a normal error distribution as follows:

AIC = N ln

�
RSS

N

�
+ 2K +

2KðK+1Þ
N � K � 1
BIC = N ln

�
RSS

N

�
+K lnðNÞ
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whereN is the number of observations, K is the number of free parameters, and RSS is residual sumof squares. Then, we further calculated the

Likelihood ratio (LR) and Bayes factor (BF) of the Gaussian model over the Mexican-hat model based on AIC73 and BIC74 approximation,

respectively, as follows:

LR = e

�
AICM �AICG

2

�

BF = e

�
BICM �BICG

2

�

where AICG and BICG are for the Gaussian model, AICM and BICM are for the Mexican-hat model.
Deep convolutional neural network for the profile of VPL

We trained a deep convolutional neural network (DCNN) model modified from AlexNet75 to perform our GOD and FVD tasks. The original

AlexNet is a classical CNN model consisting of five convolutional (conv) layers and three fully connected (fc) layers, where the fc layers are

placed after all the conv layers and the last layer is classified by softmax. In the first five layers, themodel extracts features from the input image

by convolution, from simple low-level features to complex high-level features with gradually increasing receptive fields along five conv layers.

In the last three fc layers, themodel integrates and classifies the extracted features. Here we adjusted the number of layers of original AlexNet

and constructed two networks: AlexNet-GOD and AlexNet-FVD for our GOD and FVD tasks, respectively. Similar to the deep learningmodel

fromWenliang and Seitz,68 we took original five conv layers and discarded the last two fc layers to reduce model complexity for the AlexNet-

GOD. However, we added three conv layers and took original 3 fc layers for the AlexNet-FVD since these late layers of network exhibited low

representational-similarity to early visual areas but high similarity to object/face areas, such as inferior temporal96 and superior temporal

sulcus97 areas, fusiform face and occipital face areas98 and thus may be more relevant to face-view classification here.62,63 Notably,

AlexNet-GOD and AlexNet-FVD here were trained to classify whether the target was tilted clockwise or counterclockwise and rotated left-

ward or rightward compared with the reference, respectively. We thus first obtained the pixel difference between the target and reference

images, which was then superimposed on the channels of the reference image. Finally, we used a conv layer (i.e., conv0) to match the number

of the channels between superimposed feature maps and the pre-trained AlexNet. Therefore, the AlexNet-GOD in our study consisted of 6

conv layers and 1 fc layer, whereas AlexNet-FVD consisted of 9 conv layers and 3 fc layers (Figure 4). During the training, layers 2-6 of both the

AlexNet-GOD and AlexNet-FVD were initialized with the weights of the first 5 layers of the pre-trained AlexNet, and the other weights were

initialized randomly. The last layer (seven- and twelve-layers of AlexNet-GOD and AlexNet-FVD, respectively) was trained to capture the dif-

ference between the target and reference and finally obtain the classification by softmax, to model decision making in our 2AFC paradigm

(Figure 1B), in which subjects were asked to make a 2AFC judgment of the orientation in GOD task or the view in FVD task of the second

stimulus (target) relative to the first one (reference). Moreover, the angle separation (grating orientation and face view differences in the

AlexNet-GOD and AlexNet-FVD, respectively) between the target and reference in the network was set to 5�.
Parallel to our psychophysical experiments, both the AlexNet-GOD andAlexNet-FVDwere independently trained 15 times. For each time,

the trained orientation (q�) of AlexNet-GOD was chosen randomly from 0� to 180�; the 11 test gratings were 0�,G 18�,G 36�,G 54�,G 72�,
and G 90� deviated (clockwise and counterclockwise) from the trained orientation. All grating stimuli (phase: random) were centered on

227 3 227-pixels images with gray background. The trained view (q�) of AlexNet-FVD was chosen randomly from -150� to 150�; the 11 test

faces were 0�,G 18�,G 36�,G 54�,G 72�, andG 90� deviated (left and right rotations) from the trained view. All face stimuli were presented

randomly on 227 3 227-pixels images with black background. To improve the robustness of our model, we trained the network on all com-

binations of several parameters: contrast (0.1, 0.15, 0.2. 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8) and SD of the Gaussian additive noise (5, 10, 15, 20,

25, 30, 35, 40, 45, and 50) for both the AlexNet-GOD and AlexNet-FVD; spatial wavelength (5, 10, 15, 20, 25, 30, 40, 50, 60, and 80 pixels) and

SD of the Gaussian additive blur (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0) for AlexNet-GOD and AlexNet-FVD, respectively. For each

training, there were thus a total of 2,000 images; 1,600 images were the training set and the other 400 images were the test set. For both the

AlexNet-GODandAlexNet-FVD, there were six different distances (D0�,D18�,D36�,D54�,D72�, andD90�), and for each distance, the training

effect was defined as the accuracy difference between the pre- and post-training.
Statistical analysis

Analyses were performed using paired t test to compare two conditions and repeated measures ANOVA with both post-hoc analyses and

Bonferroni correction for multiple comparisons. The assumption of homogeneity of variance was used to determine whether the data met

assumptions of the statistical approach. Sample size and statistical tests are also reported in the figure notes. No subject was excluded

from any analyses and all results presented here are from all subjects.
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