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Prestimulation neuronal activity predicts visual awareness of phosphene elicited by intracranial 
electrical stimulation 

Dear Editor: 

Visual perception is more than just a passive process of receiving 
environmental stimuli. It arises from the complex interaction with sen-
sory input and the brain’s pre-existing state [1–4]. The pre-stimulation 
state, particularly the cortical excitability, plays a crucial role in how 
we consciously perceive stimuli with near-threshold intensity [5]. One 
of the most direct methodologies to assess cortical excitability is to 
measure neurons’ spontaneous firing rates prior to stimulus presentation 
[4]. However, in human subjects, non-invasive investigations have 
predominantly utilized field potential measurements, deducing cortical 
excitability in an indirect manner [1–4]. Specifically, the 
pre-stimulation neuronal states within the human cortex that forecast 
visual awareness remain unknown. Here, we employed intracranial 
electrical stimulation (iES) alongside microwire recording techniques to 
investigate the direct impact of pre-stimulation neuronal activity on 
visual awareness. This exploration was conducted on a unique case of a 
patient with electrodes implanted in the right ventral V1 area. 

Patient D.Q. was implanted with four macro-micro electrodes 
(Supplementary Methods). The tip of one macro-micro electrode, 
named electrode X, including microwires and first two macro-contacts, 
was in the right ventral V1 (Fig. 1A). Both the patient and his legal 
guardian had a comprehensive understanding of the experimental pro-
cedures and provided their written, informed consent. All experimental 
procedures were approved by the Ethics Committee of the Sanbo Hos-
pital of Capital Medical University and the Human Subject Review 
Committee of Peking University. 

We utilized a near-threshold iES approach to explore the neural 
underpinnings of visual awareness [4]. As a well-established clinical 
technique, iES can generate artificial visual experiences without altering 
the external environment [6–8]. The experimental procedure encom-
passed three stages: (1) assessing the visual receptive fields of the 
microwires; (2) measuring the phosphene threshold induced by iES; and 
(3) conducting near-threshold iES and electrophysiological recordings 
simultaneously. 

First, we conducted the receptive field (RF) measurement experi-
ment, following the protocol described in our previous study [9] (see 
Fig. 1B and C). We isolated eight visually responsive neurons. As illus-
trated in Fig. 1D, these neurons exhibited similar RF sizes (1.899 ±
0.242◦, mean ± SE) and locations (− 17.000 ± 0.181◦, 1.663 ± 0.096◦; 
azimuth, elevation) in the upper left visual field (refer to Supplementary 
Table 1). 

Second, we applied iES to the nearest pair of macro-contacts (X01- 
X02), adjacent to the microwires, to determine the minimum stimula-
tion intensity to induce phosphenes (i.e. near-threshold intensity). The 
patient was seated in bed and instructed to fixate at a "+" sign displayed 
on a touch-screen LCD monitor (27-inch, ViewSonic TD2730) at a 

viewing distance of 66 cm. As shown in Fig. 1E and F, rectangular 
electrical pulses (frequency = 40 Hz, pulse width = 0.3 ms, duration = 5 
s) were applied to the macro-contact pair nearest the microwires. 
Starting from 1 mA, we incrementally increased the current amplitude 
with a step of 0.1 mA, until the patient reported his first a phosphene at 
1.4 mA. Immediately following the disappearance of the phosphene, the 
patient was asked to freehand sketch the phosphene on the touch-screen 
monitor. The spatial location of the phosphene closely matched the RFs 
of neurons identified via microwire recordings, corroborating findings 
in a prior study [7] (Supplementary Fig. 1). Consequently, we estimated 
the phosphene threshold level to be approximately 1.3 mA (refer to 
Supplementary Table 2). Given the clinical imperative to limit electrical 
stimulation while still fulfilling the objectives of the experiment, the 
number of iES trials was constrained. 

Third, we conducted ten near-threshold iES trials, during which we 
simultaneously recorded both spiking activities and local field potentials 
(LFPs) from the microwires (Fig. 1E). The current amplitude was 
consistently set at 1.3 mA. The patient reported perceiving a phosphene 
in seven of these trials (referred to as "visible" trials), while in the 
remaining three trials, no phosphene was reported (referred to as 
"invisible" trials; see Supplementary Table 2). No phosphenes were re-
ported in response to sham stimuli. We isolated seven neurons. As shown 
in an example neuron (Neuron #13_243), there was a noticeable vari-
ation in pre- and post-stimulation firing rates between visible and 
invisible trials (Fig. 1G and H). We observed that during the 11–29 s 
period following the onset of iES, the firing rates were higher in the 
visible trials compared to the invisible ones (all ps < 0.05; paired t-tests), 
which was consistent with a previous study [8]. During the 
pre-stimulation period, specifically in the 10 to 8 s before iES onset, 
firing rates were observed to be higher in the invisible trials compared to 
the visible ones. (Fig. 1I; − 10 s: t(6) = 2.660, p = 0.038; − 8 s: t(6) =
− 2.276, p = 0.033; − 5 s: t(6) = − 5.415, p = 0.002; paired t-tests). 
Intriguingly, during the − 3 to − 2 s period, firing rates were observed to 
be higher in visible trials compared to invisible trials (Fig. 1I; − 3 s: t(6) 
= 3.526, p = 0.013; − 2 s: t(6) = 4.076, p = 0.007; paired t-tests). 
Furthermore, we investigated the variation in LFP across different fre-
quency bands during these two critical periods. We revealed that, in the 
− 10 to − 8 s time window, only the averaged theta-band (4–7 Hz) am-
plitudes were significantly higher in visible trials compared to those in 
invisible trials (Fig. 1J, t(6) = 3.284, p = 0.017), whereas in the − 3 to − 2 
s time window, gamma-band (30–59 Hz) amplitudes in visible trials 
were significantly lower than those in invisible trials (Fig. 1J, t(6) =
− 3.774, p = 0.009). 

In conclusion, capitalizing on a rare opportunity to combine iES with 
microwire recording techniques, we discovered that the excitability of 
V1 neurons during two critical pre-stimulation periods predicts visual 
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awareness. Furthermore, distinct patterns in theta and gamma band 
amplitudes between visible and invisible trials suggest differential roles 
in facilitating visual awareness. These findings support a dynamic model 
for visual perception [10], suggesting that the slow drift of spontaneous 
neuronal activity modulates subjective experiences in response to 
physically identical stimuli, thereby enhancing our understanding of the 
neural underpinnings of consciousness [5]. 
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Fig. 1. (A) Location of the implanted macro-micro electrode (Electrode X). Microwires at the tip of the macro-micro electrode (yellow arrowhead) were localized in 
the ventral part of V1. The colors on the brain indicate different visual areas (green: V1; orange: V2; red: V3). (B), (C), and (D) illustrated the RF mapping experiment. 
(B) RF mapping of an example neuron (neuron# 13_1147). A raster plot of spikes around visual stimulus onset (left) and the spike waveforms (right) are shown. Trials 
were sorted by RF mapping position. The black curve indicates that averaged spike waveform of neuron# 13_1147. (C) Activation map of averaged firing rates (left; 
averaged between 100 and 800 ms after stimulus onset) and two-dimensional Gaussian fit (right) calculated for neuron# 13_1147. (D) RFs of the 8 neurons from three 
microwires (#9, 11, and 13). (E) to (K) illustrated the simultaneous iES and electrophysiological recording experiment. (E) Rectangular electrical pulses were 
delivered to the macro-contact pair (X01 – X02) adjacent to microwires and both local field potentials and spike activities were recorded from microwires simul-
taneously. (F) Illustration of example visible and invisible trials. The transparent yellow areas indicate the time period of iES. (G) A raster-plot of spikes around iES 
onset of an example neuron (Neuron#13_243). (H) Averaged PSTHs in visible and invisible trials of Neuron#13_243. (I) Group averaged firing rates (nneuron = 7) in 
visible and invisible trials. Red asterisks denote that the firing rates in visible trials were significantly higher than those in invisible trials, whereas blue asterisk 
indicate the opposite. (J) Comparison of the group averaged pre-stimulation powers in each frequency band between visible and invisible trials in two time windows 
(left, − 10 to − 8 s; right, − 3 to − 2 s). Error bar denote one standard error, *, p < 0.05, **, p < 0.01. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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