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A B S T R A C T

Visual perceptual learning (VPL) refers to a long-term improvement of visual task performance through training 
or experience, reflecting brain plasticity even in adults. In human subjects, VPL has been mostly studied using 
functional magnetic resonance imaging (fMRI). However, due to the low temporal resolution of fMRI, how VPL 
affects the time course of visual information processing is largely unknown. To address this issue, we trained 
human subjects to perform a visual motion direction discrimination task. Their behavioral performance and 
magnetoencephalography (MEG) signals responding to the motion stimuli were measured before, immediately 
after, and two weeks after training. Training induced a long-lasting behavioral improvement for the trained 
direction. Based on the MEG signals from occipital sensors, we found that, for the trained motion direction, VPL 
increased the motion direction decoding accuracy, reduced the motion direction decoding latency, enhanced the 
direction-selective channel response, and narrowed the tuning profile. Following the MEG source reconstruction, 
we showed that VPL enhanced the cortical response in early visual cortex (EVC) and strengthened the feedfor-
ward connection from EVC to V3A. These VPL-induced neural changes co-occurred in 160–230 ms after stimulus 
onset. Complementary to previous fMRI findings on VPL, this study provides a comprehensive description on the 
neural mechanisms of visual motion perceptual learning from a temporal perspective and reveals how VPL 
shapes the time course of visual motion processing in the adult human brain.

1. Introduction

Visual perceptual learning (VPL) is referred to as a long-lasting 
improvement in performance on a visual task after training (Gibson, 
1963; Fahle and Poggio, 2002). Such improvements can persist for even 
years (Karni and Sagi, 1993; Bi et al., 2010, 2014; He et al., 2022). Even 
adults, who have long passed the well-known early critical period, could 
benefit from VPL, demonstrating a remarkable capability to rewire their 
brains in response to visual experience (Watanabe and Sasaki, 2015). 
Therefore, VPL provides a window into the study of brain plasticity.

VPL is characterized by its specificity, with learning confined to 
specific attributes such as the trained location (Shiu and Pashler, 1992; 
Ahissar and Hochstein, 1997; Yotsumoto et al., 2008, 2009), trained eye 

(Karni and Sagi, 1991, 1993), and trained visual features such as 
orientation (Schoups et al., 1995; Schoups et al., 2001; Raiguel et al., 
2006) and motion direction (Ball and Sekuler, 1982, 1987). Such spec-
ificity implies that VPL may be mediated by neural changes in early 
visual areas, where neurons have relatively small receptive fields and 
narrow feature-selective tuning properties (Hubel and Wiesel, 1962, 
1968; Luo et al., 2023). Indeed, some studies have provided evidence for 
this view (Schoups et al., 2001; Yan et al., 2014). Alternatively, other 
studies proposed that higher cortical areas associated with 
decision-making and attention play an important role in the neural 
mechanisms underlying VPL (Mukai et al., 2007; Lewis et al., 2009; 
Kahnt et al., 2011; Jing et al., 2021). Which brain area(s) is/are changed 
by VPL remains one of the most important issues in VPL.
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VPL-induced neural modifications could be manifested in various 
forms, including cortical response augmentation (Furmanski et al., 
2004; Yotsumoto et al., 2008; Lu et al., 2021), noise correlation reduc-
tion (Bejjanki et al., 2011; Gu et al., 2011), neural selectivity enhance-
ment (Schoups et al., 2001; Yang, 2004; Zohary et al., 1994), and 
reweighting of connections between visual areas and decision-making 
areas (Dosher et al., 2013; Dosher and Lu, 2017). VPL may not be 
solely attributed to one of these modifications. For example, Chen et al. 
(2015) observed increased neural selectivity in V3A and optimized 
functional connections from V3A to intraparietal sulcus (IPS) after mo-
tion direction discrimination training, and the selectivity and connec-
tivity increases collectively accounted for the behavioral improvements.

Functional magnetic resonance imaging (fMRI) is the most widely 
adopted technique to investigate where VPL occurs and what neural 
modifications VPL induces in human brain. However, due to the limited 
temporal resolution of fMRI, how VPL modulates the time course of 
visual processing in human brain is still largely unknown.

To fill this gap, we utilized magnetoencephalography (MEG), which 
offers superior temporal resolution over fMRI, to examine changes in 
neural activities after VPL. We trained subjects to perform a motion 
direction discrimination task using the same paradigm as that in Chen 
et al. (2015). MEG signals were recorded before, immediately after, and 
two weeks after training. Various data analysis methods are employed, 
including the neural decoding method, the inverted encoding model 
(IEM), and the Granger causality analysis (GCA), to explore the 
VPL-induced neural changes and their time courses. Our results showed 
that VPL increased the neural selectivity, enhanced the visual response 
in early visual cortex (EVC) and strengthened the feedforward connec-
tion from EVC to V3A. The increase in feedforward connection was 
observed in 78–104 ms after the first motion stimulus onset, indicating a 
change at an early stage of visual motion processing. The changes in 
neural selectivity and EVC response amplitude co-occurred between 160 
and 230 ms post-stimulus, a period during which neural activities were 
correlated with behavioral performance. These changes exhibit 
remarkable retention two weeks after training.

2. Materials and methods

2.1. Subjects

A total of 16 subjects (4 males, 18–25 years old) participated in the 
study. All subjects were naïve to the purpose of the study and had never 
participated in any perceptual learning experiment before. They were 
right-handed with reported normal or corrected-to-normal vision and 
had no known neurological or visual disorders. They gave written, 
informed consent in accordance with the procedures and protocols 
approved by the human subject review committee of Peking University.

2.2. Stimuli and apparatus

The visual stimuli and procedures used in this study were similar to 
those described by Chen et al. (2015). The stimuli were random-dot 
kinematograms (RDKs) with 100 % coherence. All dots in an RDK 
moved in the same direction (luminance: 3.76 cd/ m2; diameter: 0.1◦; 
speed: 10◦/s). At any moment, 400 dots were visible within an 8◦ cir-
cular aperture centered at fixation. The dots were presented against a 
gray background (luminance: 19.8 cd/m2). In psychophysical tests, the 
stimuli were presented on a Display++ 32′’ monitor (Cambridge 
Research Systems Ltd; refresh rate: 120 Hz; spatial resolution: 1920 ×
1080). The subjects viewed the stimuli from an 80-cm distance. Their 
heads were stabilized using a head and chin rest. In MEG tests, the 
stimuli were back-projected onto a translucent screen using a video 
projector (refresh rate: 60 Hz; spatial resolution: 1024 × 768). The 
subjects viewed the stimuli from a 75-cm distance. The subjects were 
asked to fixate at the central fixation point throughout the tests.

2.3. Designs

During the training phase, each subject underwent eight daily 
training sessions to perform a motion direction discrimination task at a 
direction of θ, which was chosen randomly from eight directions (i.e., 
22.5◦, 67.5◦, 112.5◦, 157.5◦, 202.5◦, 247.5◦, 292.5◦, and 337.5◦; 0◦ was 
the rightward direction) at the beginning. Throughout the experiment, 
the training direction (i.e., θ) was fixed. Each daily training session 
comprised 27 QUEST (Watson and Pelli, 1983) staircases of 40 trials, 
resulting in 1080 trials per day. In a trial, two RDKs with motion di-
rections of θ + Δθ/2 and θ − Δθ/2 were presented successively for 200 
ms each and were separated by a 600-ms blank interval. The temporal 
order of these two RDKs was randomized. The subjects were asked to 
make a two-alternative forced-choice (2-AFC) judgment of the direction 
of the second RDK relative to the first one (clockwise or 
counter-clockwise). After each response, informative feedback was 
provided by brightening (correct response) or dimming (wrong 
response) the fixation point. The next trial began 1 s after the feedback. 
Δθ was varied trial by trial and controlled by the QUEST staircase to 
estimate the subjects’ discrimination thresholds at 75 % correct. During 
the training phase, Δθ was usually less than 4◦. According to the findings 
of Liu and Weinshall (2000), our study employed a ̀ difficult’ task, i.e., a 
fine discrimination task.

During the three test phases, the psychophysical and MEG tests were 
performed at the four motion directions, which were 0◦, 30◦, 60◦, and 
90◦ deviated from the trained direction, all either clockwise or counter- 
clockwise (hereafter referred to as 0◦, 30◦, 60◦, and 90◦). Notably, no 
feedback was given in the psychophysical and MEG tests. Prior to the 
study, the subjects practiced 10 trials per direction to become familiar 
with the stimuli and the experimental procedure. In the psychophysical 
tests, 10 QUEST staircases similar to those mentioned above were 
completed for each direction. The discrimination thresholds from the 10 
staircases for each direction were averaged to measure the subjects’ 
discrimination performance. The subjects’ performance improvements 
for a direction were calculated as follows: (pre-training threshold −
post-training threshold) / pre-training threshold × 100 %. After 
acquiring the psychophysical discrimination thresholds, we collected 
the MEG signals responding to the stimuli at four motion directions in 
eight MEG runs of 100 trials and obtained 200 trials per direction. In a 
trial, two RDKs with the motion directions of the test direction ± Δθ/2 
were presented successively for 200 ms each. They were separated by a 
600-ms blank interval and followed by a 300-ms blank interval. The 
fixation point was replaced by a cross as a cue, prompting the subjects to 
respond. A 200–800 ms interval was added between trials. The subjects 
were asked to make a 2-AFC judgment (clockwise or counter-clockwise) 
of the second motion direction relative to the first one by pressing one of 
two buttons. In the MEG tests, Δθ was fixed as the discrimination 
threshold measured in the psychophysical tests and made subjects 
perform equally well (75 % correct) across the four motion directions 
and the tests.

2.4. MEG signal acquisition and preprocessing

Neuromagnetic signals were recorded continuously at 1000 sam-
ples/second using a 306-channel (204 planar gradiometers, 102 mag-
netometers) whole-head MEG system (Elekta-Neuromag TRIUX, 
Helsinki, Finland) at Peking University. Vertical and horizontal elec-
trooculograms (EOGs) were acquired simultaneously for offline eye 
movement artifact rejection. The head position was tracked during the 
MEG recording based on a set of four head position indicator (HPI) coils 
placed on particular head landmarks. The raw MEG data were first 
processed using the temporal signal space separation (tSSS) technique 
implemented in MaxFilter 2.2 software (Elekta Neuromag) to compen-
sate for the head movements and reduce the noise from the external 
environment (Taulu and Kajola, 2005). Further preprocessing and ana-
lyses were performed using the Brainstorm toolbox (Tadel et al., 2011) 
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in MATLAB (MathWorks, Inc., Natick, Massachusetts). The MEG data 
were visually inspected. The segments contaminated by eye blinks were 
removed using a peak-to-peak rejection threshold of 200 μV for the EOG. 
Seventy-two sensors covering the occipital lobe labeled as Occipital in 
the MEG data acquisition system were selected for data analyses 
(Ramkumar et al., 2013), except for the MEG source localization.

We used either filtered or unfiltered signals for different analyses. 
For the majority of the decoding analyses and the IEM analyses, we 
utilized a 2–40 Hz band-pass filter (zero-lag linear-phase Kaiser 
windowed FIR filter with a transition bandwidth of 0.5 Hz) and gener-
ated MEG epochs from − 100 ms to 1100 ms relative to the first RDK 
onset. The epochs were then downsampled to 100 Hz and baseline 
corrected with the average activity during the 100-ms prestimulus in-
terval. For decoding analyses in different frequency bands, 4–7 Hz, 8–12 
Hz, 12–30 Hz, and 30–150 Hz band-pass filters were utilized for the 
theta, alpha, beta, and gamma bands, respectively. For the theta band, 
the epochs were baseline corrected with the average activity during the 
300-ms prestimulus interval. In this case, a longer baseline was adopted 
to avoid phase distortion and baseline contamination that could be 
introduced by the low-frequency low-pass filters. For the alpha, beta, 
and gamma bands, the 100-ms prestimulus interval was used for base-
line correction. The epochs were then downsampled to 200 Hz. Notably, 
unfiltered signals were used for the GCA because filtering may cause 
spurious causalities (Florin et al., 2010).

2.5. Decoding analysis

Time-resolved motion direction decoding analyses were conducted 
for each subject using the linear supporting vector machine (libSVM) 
implemented in the Neural Decoding Toolbox (Meyers, 2013) in MAT-
LAB. We used the 72 sensors from the occipital lobe. Data from both 
magnetometers and gradiometers were used as features for the pattern 
classifier. The sensor signals were normalized before decoding.

We used data from both correct and incorrect epochs. For each test 
direction, there were 200 epochs, with at least 150 epochs remaining 
after the artifact rejection. Therefore, we randomly selected 150 epochs 
per direction (600 trials in total) for the decoding analyses. We then 
employed a five-fold cross-validation procedure. The 150 epochs were 
randomly divided into five sets of 30 epochs. The data from each set 
were averaged to yield a mean epoch. Subsequently, the classifier was 
trained on four of these mean epochs and tested on the remaining one. 
This step was repeated for five times, each time using a different mean 
epoch as the test set and the remaining four mean epochs as the training 
set. We performed this cross-validation procedure for 50 times, with 
each repetition requiring a new random sampling of 150 epochs per 
direction. Decoding accuracy was defined as the mean accuracy of these 
50 repetitions.

Decoding latency was defined herein as the first time point where the 
decoding accuracy significantly exceeded the chance level for three 
consecutive time points (see also Isik et al., 2014). Two subjects did not 
show decoding accuracies that were significantly higher than the chance 
level during the whole time window before training but exhibited 
decoding accuracies that were significantly higher than the chance level 
after training; hence, their decoding latencies were not calculated.

2.6. Reconstruction of time-resolved motion direction representation

We reconstructed the neural representation of the motion directions 
using a method similar to that used by Mo et al. (2019). The recon-
struction was based on the IEM (Sprague et al., 2018), which assumed 
that the instantaneous sensor responses at a single time point across 
epochs could be expressed as a linear combination of the responses of 12 
motion direction channels (i.e., from − 150◦ to 180◦ in steps of 30◦): 

B = WC,

where B is the matrix of sensor signals at a given time point (72 sensors- 
by-N epochs), W is the matrix of linear weights for the direction chan-
nels (72 sensors-by-12 channels), and C is the matrix of channel re-
sponses (12 channels-by-N epochs). The IEM analysis involved two 
stages: model training and model-based reconstruction. For each of the 
three test phases (600 epochs each), we split the epochs in half to create 
separate training and reconstruction sets. We pooled the training sets 
from the three test phases together, 900 epochs in total. The remaining 
half of the epochs served as the reconstruction sets, 300 epochs for Pre, 
Post1, and Post2, respectively.

In the model training stage, we modeled the idealized tuning in each 
direction channel as the half-sinusoidal function raised to the 12th 
power peaked at the channel’s preferred direction. Hence, for each 
epoch in the model training sessions, the channel responses could be 
predicted from these idealized tuning functions. The weight matrix W 
was estimated as follows based on the predicted channel responses: 

Ŵ = B1CT
1

(
B1CT

1

)− 1
,

where B1 (72 sensors-by-900 epochs) is the optimal direction pattern 
matrix and C1 (12 channels-by-900 epochs) is the matrix of the predicted 
channel responses for the presented direction in each epoch obtained 
from the idealized channel tuning functions. In the model-based 
reconstruction stage, the weight matrix was applied to the instanta-
neous sensor signals of the test set to estimate the instantaneous indi-
vidual channel responses, as follows: 

C2 =
(

W
⌢ T

Ŵ
)

− 1Ŵ
T
B2,

where B2 (72 sensors by 300 epochs) is the matrix of instantaneous 
sensor signals from each test set and C2 (12 channels-by-300 epochs) is 
the matrix comprising column vectors of estimated epoch-wise channel 
responses. These epoch-wise vectors were then averaged, yielding one 
vector of channel responses for each time point. Hence, the direction 
information in each epoch was represented in the channel space.

We fitted the channel response profiles with a Gaussian function and 
calculated the FWHM bandwidths. Since the data did not allow for a 
reliable estimation of FWHM bandwidth at the single subject level, we 
employed non-parametric jackknife permutation methods to examine 
the FWHM bandwidth difference between test phases. The model was fit 
to n resamples from the data. In each resample, data from one subject 
were omitted, and the channel responses from the remaining n-1 sub-
jects were averaged. The FWHM bandwidth was then estimated for the 
averaged channel responses. This produced n different values of FWHM 
bandwidth and built a jackknife sample. The values of FWHM band-
width were then compared across the jackknife samples. Five thousand 
permuted samples were created by randomly recoding the test phase 
from which each FWHM bandwidth was taken. The actual difference 
between the means of the jackknife distributions was then compared to 
the 95th percentile of the permuted samples to test whether the prob-
ability of the measured differences between different test phases 
occurring by chance was smaller than 0.05.

2.7. Structural MRI acquisition and preprocessing

A high-resolution structural MRI dataset was acquired for each 
subject using a 3T Siemens Magnetom Prisma scanner (T1-weighted; 3D 
MPRAGE; TE: 30 ms; TR: 2000 ms; flip angle: 90; FOV: 224 × 224 mm2; 
slice orientation: transversal; voxel size: 0.5 × 0.5 × 1 mm3) at the 
Center for MRI Research at Peking University. The cortical surface of 
each subject was reconstructed from theT1-weighted structural images 
using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).

2.8. MEG source reconstruction and region-of-interest selection

The structural images were co-registered to the MEG coordinate 
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system using the Brainstorm toolbox and SPM8. They were then 
segmented and linearly normalized to a template brain in the MNI space. 
For each subject, a head model was generated using the overlapping 
spheres method (Huang et al., 1999). Subsequently, a noise covariance 
matrix (from − 100 to 0 ms) and a data covariance matrix (from 0 to 
1100 ms) were estimated from the recordings. A pre-whitening process 
was then conducted to scale the sensor channels based on the standard 
deviations observed in the baseline recordings, as obtained from the 
noise covariance matrix. This process aligned the units and scales of the 
magnetometer and gradiometer data (Engemann and Gramfort, 2015). 
Next, using the head model and the covariance matrices, we projected 
the sensor-level timeseries into a source space consisting of 15,000 
vertices with a cortically constrained minimum L2-norm estimate 
(MNE) (Hämäläinen et al., 1993). The generated source current density 
was then normalized by an estimate of projected noise to calculate the 
dynamic statistical parametric map (dSPM) (Dale et al., 2000), which 
was treated as the source activity. Finally, an isotropic Gaussian kernel 
with a full-width-at-half-maximum (FWHM) of 5 mm was applied to the 
dSPM for spatial smoothing.

V1d, V1v, V2d, V2v, V3A, and IPS were identified using the atlas of 
Wang et al. (2015). MT+ was identified using the Broadmann Area Maps 
of Freesurfer. Considering the spatial resolution of MEG, we combined 
V1d, V1v, V2d, and V2v together, which were referred to as early visual 
cortex (EVC).

2.9. GCA

GCA (Granger, 1969) was performed to investigate causal in-
teractions between the regions of interest (ROIs). The principal idea 
behind the GCA is that if the addition of the history of signal A improves 
the prediction of signal B, as compared to the prediction of signal B 
based on its own history alone, then signal A is said to ‘‘Granger cause’’ 
signal B. We computed the time series for each motion direction and 
vertex, and averaged the time series across all vertices within each ROI. 
To satisfy the stationarity assumption of GCA, we used the raw data 
without any filters. Then the data were linearly detrended, and the 
temporal ensemble mean at each time point was subtracted from each 
trial before calculating the GC values. Based on the approaches from 
Ding et al. (2000) and Barnett and Seth (2014), the data were separated 
into sequential 200-ms sliding time windows in steps of 1 ms. Granger 
causality analyses were conducted independently for each time window. 
Time series in each window were then added into a multivariate 
autoregressive (MVAR) model to calculate GC values. The model order, 
a parameter indicating the number of time lags required to estimate the 
MVAR model, was determined using the Akaike information criterion 
(Akaike, 1974).

2.10. Statistical analyses

Bonferroni correction was applied with t-tests, correlations, and 
ANOVAs involving multiple comparisons. Before performing ANOVAs, 
we first verified the data distribution assumptions of normality and 
heteroscedasticity using the Shapiro–Wilk and Levene’s tests, 
respectively.

For the decoding analyses, we utilized a nonparametric permutation 
test to determine whether or not the decoding accuracies significantly 
exceeded the chance levels and calculate the decoding latencies. We 
generated a null distribution by running the decoding procedure for 200 
times with randomly shuffled labels. Decoding accuracies that exceeded 
all points in the null distribution for the corresponding time point were 
deemed significant with p < 0.005 (1/200).

A similar nonparametric permutation test was conducted for the 
Granger causality analyses. The Granger causality (GC) values were 
calculated by shuffling the time series for 10 times. Subsequently, we 
combined the GC values for all time points to form a null distribution 
and used GC values above 95 % of the points in this distribution as the 

significance criteria.
To avoid an inflated family-wise error rate, we employed cluster- 

based permutation tests when conducting within-group comparisons 
of time courses of the decoding accuracy and the Granger causality 
before and after training. This approach searches for temporal clusters of 
individually significant time points by taking advantage of the fact that 
information is typically distributed over the adjacent time points but 
does not require any assumptions about normality.

To implement this approach, we first applied paired t tests to 
determine whether or not the decoding accuracy at each time point 
became significantly higher after training. We then identified the clus-
ters of the consecutive time points for which the t tests were significant 
(p < 0.05) and computed the cluster-level t mass (i.e., sum of the t scores 
within each cluster). Subsequently, we evaluated if the computed t mass 
of a cluster was larger than what could be expected by chance, which 
was determined through permutation tests. This strategy controlled the 
Type-I error rate at the cluster level, yielding a probability of 0.05 that 
one or more clusters will be significant if training did not influence the 
decoding accuracy. We then constructed a null distribution of the 
cluster-level t mass values through the permutation tests. In this process, 
we randomly permuted the test labels (Pre/Post) for each subject and 
calculated the t values in the same manner as that for the original 
nonpermuted data. For each permutation, the largest t mass value was 
recorded and added to the permuted distribution. This permutation 
process was iterated for 5000 times to generate a null distribution. The p 
value for each cluster in the actual data set was determined based on the 
nearest null distribution percentiles. We rejected the null hypothesis and 
inferred a training effect on the decoding accuracy if the observed t mass 
value for a given cluster fell within the top 5 % of the null distribution. 
The procedures for comparisons of Granger causality were conducted in 
the same manner.

3. Results

3.1. Behavioral results

We first applied a repeated-measures ANOVA to the motion direction 
discrimination thresholds measured at Pre, with motion direction (0◦, 
30◦, 60◦, and 90◦) as a within-subject factor. The main effect of motion 
direction was not significant (F (3,45) = 1.951, p = 0.135), demon-
strating no significant difference in motion direction discrimination 
performance between the motion directions before training (Fig. 1).

As shown in Fig. 2A, the motion direction discrimination thresholds 
gradually decreased throughout the training. The thresholds measured 
during the training phase were submitted to a repeated-measures 
ANOVA with a within-subject factor of training day. The main effect 
of training day was significant (F (7, 105) = 12.185, p = 2.57 × 10–11). 
We then conducted another repeated-measures ANOVA to the motion 
direction discrimination thresholds measured at test phases with test 
(Pre, Post1, and Post2) and motion direction (0◦, 30◦, 60◦, and 90◦) as 
within-subject factors. Both the main effects of test (F (2,14) = 20.589, p 
= 6.8 × 10–5) and motion direction (F (3,13) = 20.589, p = 5.74 × 10–4) 
were significant. The interaction between the test and motion direction 
was significant (F (6,10) = 8.028, p = 0.00232). Bonferroni corrected 
post hoc t-tests showed that the thresholds for the trained direction were 
significantly lower at Post1 (t (15) = 9.015, p = 3.84 × 10–7) and Post2 (t 
(15) = 10.417, p = 5.83 × 10–8) compared with those at Pre, suggesting 
a significant and long-lasting learning effect for the trained direction 
(Fig. 2B).

We then calculated the percent improvement in discrimination per-
formance, revealing over 50 % improvement at both Post1 and Post2 for 
the trained direction. We also conducted another repeated-measures 
ANOVA to the percent improvements, with test (Post1 and Post2) and 
direction (0◦, 30◦, 60◦, and 90◦) as within-subject factors. Neither the 
main effect of test (F (1, 15) = 0.047, p = 0.832) nor the interaction 
between test and direction (F (3,45) = 1.238, p = 0.307) was significant. 
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By contrast, the main effect of direction was highly significant (F (3,45) 
= 12.095, p = 6 × 10–6). Bonferroni corrected post hoc t-tests revealed a 
higher improvement for the trained direction compared to that for the 
three untrained directions (0◦ vs. 30◦, t (31) = 5.540, p = 3.4 × 10–4; 
0◦ vs. 60◦, t (31) = 4.862, p = 1.2 × 10–3; 0◦ vs. 90◦, t (31) = 5.010, p =
9.3 × 10–4), indicating a strong learning specificity. Meanwhile, no 
significant difference in percent improvement was found between the 
three untrained directions (all p > 0.05).

3.2. Decoding results

We used a multivariate decoding approach to classify the occipital 
MEG signals elicited by the trained and untrained directions in a time- 
resolved manner at Pre, Post1, and Post2. If training refines the neural 
representations of the motion directions, and therefore, renders the 
representations more discriminable, the decoding accuracy will increase 
after training. Meanwhile, the time when the increase in decoding ac-
curacy occurs could inform us how VPL modifies the time course of vi-
sual motion processing.

First, in a four-way motion direction (0◦/30◦/60◦/90◦) decoding 
analysis, we compared the time courses of decoding accuracies at Pre 
and Post1/Post2. As shown in Fig. 3A, training-induced increases in 

decoding accuracy at Post1 were observed during 150–340 ms after the 
first RDK onset (p < 1 × 10–10, cluster-based permutation test) and 
during 160–230 ms after the second RDK onset (p = 0.034, cluster-based 
permutation test). At Post2, increased decoding accuracies were found 
both after the first RDK onset (140–210 ms, p = 0.0390; 240–310 ms, p =
0.0070; 380–500 ms, p = 0.0176; cluster-based permutation test) and 
the second RDK onset (90–230 ms, p = 0.0002, cluster-based permuta-
tion test). Therefore, the time windows with increased decoding accu-
racies at Post1 and Post2 overlapped, that is, 150–210 ms and 240–310 
ms after the first RDK onset and 160–230 ms after the second RDK onset. 
No difference was found between Post1 and Post2 at all time points (all p 
> 0.05, cluster-based permutation test). To test whether there is a global 
time effect, we conducted a repeated-measures ANOVA on the decoding 
accuracy at each time point with test time as the within-subject factor. 
To avoid an inflated family-wise error rate, we employed FDR correction 
on the ANOVA results. The main effect of test time was significant 
during 160–200 ms, 250–310 ms, and 470–490 ms after the first RDK 
and during 100–120 ms, 160–220 ms, and 270–280 ms after the second 
RDK.

The peak decoding accuracies for the first RDK at Post1 (t (15) =
5.502, p = 0.0001) and Post2 (t (15) = 4.445, p = 0.0009) were 
significantly higher than that at Pre (Fig. 3B). Notably, we found 

Fig. 1. Stimuli and experimental protocol. (A) Schematic description of a two-alternative forced-choice (2-AFC) trial in a QUEST staircase for measuring motion 
direction discrimination thresholds. Subjects were asked to judge the direction of the second RDK relative to the first one (clockwise or counterclockwise). (B) 
Experimental protocol. The subjects underwent motion direction discrimination training at a fixed motion direction over eight days with 1080 trials per day. They 
were tested at 0◦, 30◦, 60◦, and 90◦ away from the trained direction on the days before (Pre), immediately after (Post1), and two weeks after training (Post2).

Fig. 2. Perceptual learning effects. (A) Learning curve. Motion direction discrimination thresholds are plotted as a function of training day. (B) Motion direction 
discrimination thresholds at Pre, Post1, and Post2. (C) Percent improvements in motion direction discrimination performance for the trained (solid bar) and un-
trained (hollow bar) directions at Post1 and Post2 relative to those at Pre. No significant difference was found between the three untrained directions (30◦, 60◦, and 
90◦); hence, the improvements for these directions were averaged. Asterisks indicate significant differences between the improvements for the trained and untrained 
directions (***p < 0.001). Error bars denote 1 SEM calculated across the subjects.
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significant correlations between the peak decoding accuracies for the 
first RDK and the thresholds at Pre (Pearson’s r = − 0.684, p = 0.0035), 
Post1 (Pearson’s r = − 0.579, p = 0.0189), and Post2 (Pearson’s r =
− 0.567, p = 0.0220) (Fig. 3C). Furthermore, the decoding latencies at 
Post1 (115.00 ± 5.43 ms) and Post2 (120.33 ± 7.74 ms) were signifi-
cantly shorter than that at Pre (147.67 ± 13.36 ms; Post1 vs. Pre, t (14) 
= 3.361, p = 0.0093; Post2 vs. Pre, t (14) = 2.927, p = 0.0221), indi-
cating that training might speed up the visual processing of the motion 
direction, and maintained for at least two weeks (Fig. 3D). Therefore, 
the decoding accuracy findings not only captured individual differences 
in the motion direction discrimination but also reflected the training- 
induced acceleration in the visual motion processing and refinement 
in the neural representation of the motion direction.

It could be argued that the improved decoding accuracies in the four- 
way decoding analysis could be attributed to the refined neural repre-
sentation of the trained direction or some untrained direction(s). To 
examine this issue, we performed two two-way decoding analyses 
− 0◦ vs. 30◦ classification and 60◦ vs. 90◦ classification. We hypothesize 
that if training only refines the neural representation of the trained di-
rection, we should observe an improved decoding accuracy with the 
0◦ vs. 30◦ classification but not with the 60◦ vs. 90◦ classification.

The decoding accuracy for the 0◦ vs. 30◦ classification (Fig. 4A) at 
Post1 was significantly higher than that at Pre during 150–200 ms after 
the first RDK onset (p = 0.0266, cluster-based permutation test) and was 
also evident during 150–210 ms after the second RDK onset (p = 0.0420, 
cluster-based permutation test). At Post2, decoding accuracy increases 
were observed during 140–190 ms after the first RDK onset (p = 0.0342, 
cluster-based permutation test). Therefore, the time window during 
which decoding accuracies increased at Post1 and Post2 overlapped 

during 150–190 ms after the first RDK onset. No difference was found 
between Post1 and Post2 at all time points (all p > 0.05, cluster-based 
permutation test). Repeated-measures ANOVA revealed significant 
main effect of test time during 160–200 ms, 240–260 ms, and 330–340 
ms after the first RDK and during 160–200 ms after the second RDK, 
suggesting a global time effect of training.

The peak decoding accuracies at Post1 (t (15) = 3.885, p = 0.003) 
and Post2 (t (15) = 2.422, p = 0.057) also increased (Fig. 4B). Similar to 
the four-way decoding analyses, the neural decoder performance par-
alleled the behavioral performance because significant correlations 
were observed between the peak decoding accuracies and the thresholds 
at Pre (Pearson’s r = − 0.694, p = 0.0029), Post1 (Pearson’s r = − 0.465, p 
= 0.0696), and Post2 (Pearson’s r = − 0.569, p = 0.0214) (Fig. 4C). 
Compared with the decoding latency at Pre (157.08 ± 12.30 ms), the 
latencies at Post1 (136.67 ± 11.22 ms) and Post2 (131.67 ± 10.02 ms) 
were also shorter (Post1 vs. Pre, t (11) = 3.478, p = 0.0103; Post2 vs. 
Pre, t (11) = 3.056, p = 0.0218)(Fig. 4D). On the contrary, for the 60◦ vs. 
90◦ classification, we failed to find a decoding accuracy increase and a 
decoding latency reduction (Fig. 4E–H). In summary, the two-way 
decoding analysis results support our hypothesis that training aug-
ments the differentiation of the neural representation around the trained 
direction and speeds up the visual motion processing of the trained di-
rection, echoing our four-way decoding findings.

To examine which frequency band in the MEG signals contributed to 
the improved decoding accuracy, we performed the decoding analysis at 
the frequency bands of theta, alpha, beta, and gamma. For theta band, 
learning effects appeared during 150–450 ms after the first RDK onset at 
Post1 (p < 1 × 10–10, cluster-based permutation test) and during 
150–460 ms after the first RDK onset at Post2 (p < 1 × 10–10, cluster- 

Fig. 3. Four-way decoding results. (A) Time courses of decoding accuracy at Pre, Post1, and Post2. The shaded areas around the time courses indicate the standard 
error of the mean. The gray rectangular areas depict the stimulus presentation intervals. T The blue (Post1) / orange (Post2) lines on the top represent the time 
periods with significant decoding accuracy increases after training. The black lines on the top represent the time periods with the significant main effect of test in the 
ANOVA. The dashed lines indicate the chance level of the four-way decoding analysis (25 %). (B) Peak decoding accuracies for the first RDK at Pre, Post1, and Post2. 
Asterisks indicate significant increases in peak decoding accuracy after training (***p < 0.001). (C) Correlations between the peak decoding accuracies and the 
motion direction discrimination thresholds at Pre, Post1, and Post2. (D) Decoding latencies at Pre, Post1, and Post2. Asterisks indicate significant decreases in 
decoding latency after training (*p < 0.05, **p < 0.01). Error bars denote 1 SEM calculated across the subjects.
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based permutation test) (Fig. 5A). Therefore, these two intervals over-
lapped at 150–450 ms after the first RDK onset, which is consistent with 
the time window of the learning effect observed in the previous broad-
band signal decoding analyses. Similarly, the peak decoding accuracy of 
the theta band signals increased significantly at Post1 (t (15) = 3.919, p 
= 0.0164) and Post2 (t (15) = 5.023, p = 0.0018). For other frequency 
bands, no significant learning-induced changes in decoding accuracy 
were detected (Fig. 5B–D).

3.3. IEM

We then examined how and when VPL would modify the neural 
selectivity for the trained RDK. Herein, we utilized the IEM to 

decompose the MEG sensor signals into 12 hypothetical direction- 
selective channel responses and reconstruct the channel responses to 
the trained and untrained (i.e., 90◦) RDKs.

First, we averaged the responses for each channel between 0 and 400 
ms after the first RDK onset (Fig. 6B). Training significantly enhanced 
the channel responses to the trained RDK at both Post1 and Post2 pri-
marily in the channels tuned to the trained direction (Post1:t (15) =
6.209, p = 2.04 × 10–4; Post2:t (15) = 5.518, p = 7.08 × 10–4) and 
surrounding directions, including the − 30◦ offset (Post1:t (15) = 5.384, 
p = 9.12 × 10–4; Post2:t (15) = 5.511, p = 7.20 × 10–4) and the +30◦

(Post1:t (15) = 4.109, p = 0.011) offset. No significant response change 
occurred in any channel for the untrained direction (all p > 0.05, 
Fig. 6D).

Fig. 4. Two-way decoding results around the trained (0◦ vs. 30◦, A-D) and untrained (60◦ vs. 90◦, E-H) directions and plotted in the same format as in Fig. 3. Error 
bars denote 1 SEM calculated across the subjects. Asterisks indicate significant decreases in decoding latency after training and significant increases in peak decoding 
accuracy after training (*p < 0.05, **p < 0.01).
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Next, we fitted the channel response profiles with a Gaussian func-
tion and calculated its FWHM bandwidth as a measurement of neural 
selectivity. For the trained RDK, the FWHM bandwidth was significantly 
smaller at Post1 (Post1 vs. Pre, p = 0.0092, jackknife permutation test) 
and Post2 (Post2 vs. Pre, p = 0.0213, jackknife permutation test) than 
that at Pre. No bandwidth difference was found when viewing the un-
trained RDK (Post1 vs. Pre, p = 0.1418; Post2 vs. Pre, p = 0.2603; 
jackknife permutation test).

To investigate when the tuning change emerged, we calculated the 
average channel responses for the trained RDK within consecutive 50 ms 
time windows, starting from the onset of the first RDK (Fig. 6E). We then 
submitted the responses of the channel tuned to the trained direction to 
a repeated-measures ANOVA with time window and test as within- 
subject factors. Significant main effects of test (F (2,30) = 17.55, p =
9 × 10–6) and time window (F (7105) = 16.63, p < 1 × 10–10) were 
observed. Training enhanced channel response during the time windows 
of 150–200 ms, 200–250 ms, 300–350 ms, and 350–400 ms (see 
Table 1). Narrowed FWHM bandwidths after training were also 
observed at Post1 (150–200 ms, p = 0.0321; 200–250 ms, p = 0.0023; 

300–350 ms, p = 0.0316; 350–400 ms, p = 0.0152; jackknife permuta-
tion test) and Post2 (150–200 ms, p = 0.0413; 200–250 ms, p = 0.0345; 
300–350 ms, p = 0.0284; 350–400 ms, p = 0.013; jackknife permutation 
test) (Fig. 6F). Therefore, the learning-induced changes in the cortical 
tuning and decoding accuracy occurred within the same time period.

3.4. Cortical activities and GCA

The IEM reconstruction estimated the hypothetical direction- 
selective channel responses to the RDKs. To directly quantify cortical 
activities to the trained and untrained RDKs, we mapped MEG sensor 
maps to cortical sources using a dSPM approach. We selected four ROIs: 
EVC, V3A, MT+, and IPS, and calculated the time series of normalized 
response within each ROI.

Only in EVC we found VPL-induced increase in cortical response to 
the trained RDK (Fig. 7A). This increase was observed at both Post1 
(168–234 ms, p = 0.0002; 966–1034 ms, p < 1 × 10–10; cluster-based 
permutation test) and Post2 (180–223 ms, p = 0.0092; 973–1022 ms, 
p = 0.0118; cluster-based permutation test). No other ROI exhibited 

Fig. 5. Four-way decoding results in different frequency bands: theta (A), alpha (B), beta (C), and gamma (D). Top: time courses of the decoding accuracy at Pre and 
Post1. The gray rectangular areas indicate the stimulus presentation intervals. The black lines on the top represent the time periods with significant increases in 
decoding accuracy after training. The dashed lines denote the chance level of the four-way decoding analysis (25 %). Middle: time courses of decoding accuracy at 
Pre and Post2. Bottom: peak decoding accuracies for the first RDK at Pre, Post1, and Post2. Asterisks indicate a significant increase in decoding accuracy after training 
(*p < 0.05, **p < 0.01). Error bars denote 1 SEM calculated across the subjects.
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Fig. 6. IEM results. (A and C) Reconstructed channel responses during the visual processing of the trained RDK (0◦) and the untrained RDK (i.e., 90◦) at Pre, Post1, 
and Post2. (B and D) Left and middle: channel responses to the trained RDK and the untrained RDK averaged over the 0–400 ms time window at Pre, Post1, and Post2. 
Asterisks denote significant increases in channel response after training (*p < 0.05, ***p < 0.001). Right: FWHM bandwidths of the fitted curves for channel response 
profiles. Asterisks denote significant decreases in the FWHM bandwidths (*p < 0.05). (E) Channel responses to the trained RDK averaged for each 50 ms time 
window. Asterisks denote significant increases in channel response after training (*p < 0.05, **p < 0.01). (F) FWHM bandwidths of the fitted curves for each time 
window. Error bars denote 1 SEM calculated across the subjects. Asterisks denote significant decreases in FWHM bandwidth after training (*p < 0.05, **p < 0.01).
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significant change in response after training. For the untrained RDK, no 
change was found in any ROI. For the averaged response between 0 and 
400 ms, only the response in EVC increased after training (Post1 vs. Pre, 
t (15) = 4.381, p = 0.0011; Post2 vs. Pre, t (15) = 3.467, p = 0.0066) 
(Fig. 7B).

Next, we examined the training-induced feedforward and feedback 
connection changes among these ROIs. Accordingly, we calculated the 
directional GC between the pairwise combinations of EVC, V3A, MT+, 
and IPS, using a 200 ms sliding window.

The results showed that training increased the feedforward connec-
tion from EVC to V3A for the trained direction at both Post1 (78–104 ms, 
p < 1 × 10–10; 143–181 ms, p < 1 × 10–10; 795–819 ms, p = 0.0016; 
1020–1068 ms, p < 1 × 10–10; cluster-based permutation test) and Post2 
(75–104 ms, p < 1 × 10–10; 134–205 ms, p < 1 × 10–10; 210–230 ms, p =
0.0392; 439–462 ms, p = 0.0026; cluster-based permutation test) 
(Fig. 8A, top panels). Therefore, the time windows with increased 
feedforward connection at Post1 and Post2 overlapped, that is, 75–104 

ms and 143–181 ms after the first RDK onset. Notably, the connection 
increase was also specific to the trained direction (Fig. 8A, bottom 
panels). No other ROI pair exhibited reliable, consistent feedback and/ 
or feedforward connection changes across Post1 and Post2. Fig. 8B de-
picts the averaged GC values between 0 ms and 400 ms after the first 
RDK onset. Only the feedforward connection from EVC to V3A increased 
after training (Post1 vs. Pre, t (15) = 1.853, p = 0.0417; Post2 vs. Pre, t 
(15) = 2.428, p = 0.014).

4. Discussion

This study presents several key findings. VPL (1) increased the mo-
tion direction decoding accuracy, (2) reduced the motion direction 
decoding latency, (3) enhanced the direction-selective channel response 
and narrowed the tuning profile estimated by the IEM, (4) enhanced the 
EVC response, and (5) strengthened the feedforward connection from 
EVC to V3A. These changes were only found in the visual processing of 
the trained direction, demonstrating the specificity of VPL-induced 
neural changes. The increase in feedforward connection was observed 
during 78–104 ms after the first RDK onset. Other changes co-occurred 
during 160–230 ms after the first RDK onset.

Our results suggest that VPL increased the neural selectivity for the 
trained direction. This was evident in the increased decoding accuracy 
and the narrowed tuning profile estimated by the IEM. The VPL-induced 
increase in decoding accuracy has been found in EVC (Yan et al., 2014; 
Zhang et al., 2023), MT+ (Chen et al., 2017), and V3A (Shibata et al., 
2012; Chen et al., 2015). Such an increase suggested that the neural 
representation of the trained direction became more separated from 

Table 1 
Significant training-induced changes in channel response to the trained RDK, 
averaged within each 50 ms time window (*p < 0.05, **p < 0.01).

Time window (ms) Post1 vs. Pre Post2 vs. Pre

T-value (df = 15) p-value T-value (df = 15) p-value

150–200 2.658 0.036* 2.758 0.029*
200–250 3.650 0.005** 2.765 0.029*
250–300 2.644 0.037* 3.567 0.006**
300–350 3.263 0.010* 3.070 0.016*
350–400 3.067 0.016* 3.122 0.014*

Fig. 7. Cortical activities. (A) Early visual cortex (EVC) responses to the trained RDK at Pre, Post1, and Post2. The shaded areas around the time courses indicate the 
standard error of the mean. The gray rectangular areas depict the stimulus presentation intervals. The blue (Post1) / orange (Post2) lines on the top represent the time 
periods with significant cortical activity increases after training. (B) Averaged responses to the trained RDK and the untrained RDK (i.e., 90◦) from 0 to 400 ms in 
EVC, V3A, MT+, and IPS. Asterisk indicates significant increases in response after training (**p < 0.01). Error bars denote 1 SEM calculated across the subjects.
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Fig. 8. Granger causality analysis (GCA) results. (A) The top panels show the time courses of directional GC from early visual cortex (EVC) to V3A during the visual 
processing of the RDKs for the trained direction, while the bottom panels depict those for the untrained direction (i.e., 90◦), measured at Pre, Post1, and Post2. The 
GC value at each time point was calculated within a time window that extended 200 ms before the time point. The shaded areas around the time courses depict the 
standard error of the mean. The blue (Post1) / orange (Post2) lines on the top indicate the time periods with significant increases in GC value after training. The 
dashed lines indicate the GC value at the 95th percentile of the null distribution calculated using a random shuffle method. (B) Averaged directional GC values for the 
trained RDK from 0 ms to 400 ms after the first RDK onset. The GC values were calculated between the pairwise combinations of EVC, V3A, MT+, and IPS. The 
asterisk indicates significant increases in GC value after training (*p < 0.05). Error bars denote 1 SEM calculated across the subjects.
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those of the untrained directions after VPL. This speculation could be 
further supported by the narrowed FWHM bandwidth of cortical tuning. 
For the trained direction, the channel response profile became steeper 
after VPL, making it easier to discriminate the trained direction from the 
other directions.

Another change in the IEM channel response profiles was the 
enhancement in response amplitude for the channels preferring the 
trained direction and its neighboring directions. This is consistent with 
previous studies that showed the neural augmentation induced by VPL 
(Bao et al., 2010; Furmanski et al., 2004; Hua et al., 2010; Larcombe 
et al., 2018; Schwartz et al., 2002). One could argue that the enhance-
ment in channel response, estimated with the IEM, does not necessarily 
reflect corresponding changes in real cortical responses to the RDKs. To 
address this issue, following the MEG source reconstruction, we esti-
mated the cortical responses to the trained RDK in EVC, MT+, V3A, and 
IPS. As a result, we observed an increase in EVC response to the trained 
RDK. The increase remained two weeks after training, demonstrating a 
persistent change.

We attempted to decode the motion directions from theta, alpha, 
beta, and gamma band MEG signals. Only in theta band (4–7 Hz) did we 
find increased decoding accuracy after training. Bastos et al. (2015) and 
Spyropoulos et al. (2018) demonstrated that the feedforward informa-
tion in the primate visual system is conveyed through theta (~4 Hz)- and 
gamma (~60–80 Hz)-band synchronization. Kienitz et al. (2021) found 
that in V1, both theta and gamma oscillations occurred primarily in the 
supragranular layers, which serve as the cortical output compartment of 
V1. In addition, when major feedforward input to V4 was removed by 
lesioning V1, the V4 theta was eliminated. Therefore, we speculate that 
the increase in decoding accuracy might be relevant to the change in 
feedforward transmission of the motion direction information carried by 
theta oscillation. Gamma oscillation is also important for feedforward 
transmission (Bastos et al., 2015; Vezoli et al., 2021). Although our 
experiment failed to find a significant change in the gamma band’s 
decoding accuracy, it could be due to the limited signal-to-noise ratio of 
the MEG recording compared to that of the intracranial electrophysio-
logical recording.

Inspired by the decoding finding in theta oscillation, we employed 
the GCA and uncovered an increase in the feedforward connection from 
EVC to V3A after VPL. Chen et al. (2015) reported that VPL optimized 
the feedforward connection from V3A to IPS. This discrepancy might 
arise from the recording technique difference (fMRI vs. MEG), as well as 
the methodological difference in the definition of IPS. Chen et al. (2015)
used an fMRI localizer to define IPS, but we used an anatomically 
defined atlas instead. This resulted in the identification of a larger IPS 
region in our study. Both studies showed no post-training change in 
connection with MT+, which could be explained by the utilization of 
100 % coherent RDKs and the V3A’s dominant role in the local motion 
information processing over MT+ (Vaina et al., 2003; Cai et al., 2014).

What is beyond previous fMRI studies (e.g., Chen et al., 2015, 2017) 
is our study’s temporally precise neural information.

Firstly, we found reduced decoding latency after VPL. This reduction 
was only found when classifying the trained direction from other di-
rections. It has been shown that VPL reduces latencies of ERP compo-
nents N170 (Su et al., 2012, 2013), P1 and P2 (Xi et al., 2020), and N1 
(Ahmadi et al., 2018). The faster visual processing after VPL might arise 
from synaptic potentiation between neurons following visual experience 
(Grill-Spector et al., 2006). To our knowledge, our study is the first to 
reveal the VPL-induced change in decoding latency, which reflects the 
time when neural activity patterns for two or more visual stimuli 
become discriminable.

Secondly, the increase in feedforward connection from EVC to V3A 
was observed during 78–104 ms after the first RDK onset, indicating a 
change at an early stage of visual motion processing. Subsequently, the 
changes in decoding accuracy, cortical tuning, visual response in EVC, 
and feedforward connection co-occurred during 160–230 ms after the 
first RDK onset. In the time window of 160–230 ms after stimulus onset, 

several MEG/EEG studies have also identified neural responses to mo-
tion stimuli (Hoffmann et al., 1999; Kreegipuu and Allik, 2007; Kuba 
and Kubová, 1992; Kubová et al., 1990; Prieto et al., 2007). Specifically, 
a motion-onset visual evoked potential, N2, was observed 160–200 ms 
after motion onset (Bach and Ullrich, 1994; Kubová et al., 1995; Nie-
deggen and Wist, 1999). Thus, the VPL-induced changes in our results 
are likely to be associated with relatively early and feedforward pro-
cessing of motion information.

Notably, the peak of motion direction decoding accuracy in our study 
was mainly reached between 160 and 230 ms after the first RDK onset. A 
correlation between the behavioral thresholds and the peak decoding 
accuracies was found across subjects in all three tests – Pre, Post1, and 
Post2. In other words, the MEG peak decoding accuracy in this time 
window could not only estimate the individual differences in vision 
before training but also parallel individual behavioral performance after 
training. Similarly, Gold and Shadlen (2001) found that the spike dis-
charges in the superior colliculus and lateral intraparietal area (LIP), 
both occurring within 100–250 ms after the onset of motion stimuli, 
could accurately predict the sensory judgments in macaques. Taken 
together, these findings suggest that, for visual motion processing, 
neural activities within this period could mirror behavioral 
performance.

Our study found increased motion direction decoding accuracy, 
sharpened cortical tuning, enhanced EVC response, and enhanced 
feedforward connection from EVC to V3A during roughly the same 
period. These training-induced changes, while not correlated with each 
other, might reflect two key aspects of the neural mechanisms under-
pinning visual motion perceptual learning. First, training appears to 
improve sensory coding, as evidenced by the increased motion direction 
decoding accuracy, sharpened cortical tuning, and enhanced EVC 
response. Second, training could strengthen cortical-cortical connec-
tivity that might be associated with perceptual decision-making, as 
indicated by the enhanced feedforward connection from EVC to V3A. 
Liu and Pack (2017) have found that training moves the readout of 
motion information between MT and lower-level cortical areas. 
Although Liu and Pack’s findings are very interesting, due to the dif-
ference in training paradigm, their findings do not appear to be directly 
related to our findings.

Although we have observed performance improvements (i.e., 
learning effects) at the untrained directions, we failed to find corre-
sponding changes in the decoding, IEM, GCA, or cortical activity ana-
lyses. One possible reason is that we limited our analysis to the 72 
sensors covering the occipital lobe. However, direction non-specific 
learning may involve changes in task strategy, decision-making, and 
attentional allocation, which are likely associated with higher-order 
cortical areas (Kahnt et al., 2011; Law and Gold, 2009; Gilbert and Li, 
2013; Li, 2016). Our study focused on direction-specific learning and its 
related neural activity in the visual cortex. The current analyses are not 
well-suited to investigate direction non-specific learning. We admit that 
this is a limitation of our study.

In this study, the gender ratio is not well-balanced, with fewer male 
subjects than female subjects. To our knowledge, very few studies have 
explored the gender difference in motion perception, especially motion 
perceptual learning, Murray et al. (2018) found that male subjects have 
significantly shorter motion duration thresholds than female subjects. 
McDevitt et al. (2014) discovered that male subjects exhibited more 
learning specificity than female subjects. This issue might be an inter-
esting topic for future study.

To the best of our knowledge, this study is the first to make an 
exploration of the long-term neural mechanisms of visual motion 
perceptual learning using MEG. It provides new information that sheds 
light on the temporal characteristics of the VPL effects in the visual 
cortex. Future research could further explore this issue in human sub-
jects, especially with the aid of deep neural networks (Wu and Liang, 
2010; Wenliang and Seitz, 2018; Manenti et al., 2023) and intracranial 
recordings (e.g., stereoelectroencephalography, sEEG) that can provide 
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very precise spatial and temporal information.
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