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Human ventral occipital temporal cortex contains clusters of neurons that show domain-preferring responses during visual perception.
Recent studies have reported that some of these clusters show surprisingly similar domain selectivity in congenitally blind participants
performing nonvisual tasks. An important open question is whether these functional similarities are driven by similar innate connections
in blind and sighted groups. Here we addressed this question focusing on the parahippocampal gyrus (PHG), a region that is selective for large
objects and scenes. Based on the assumption that patterns of long-range connectivity shape local computation, we examined whether domain
selectivityinPHGisdrivenbysimilarstructuralconnectivitypatternsinthetwopopulations.Multipleregressionmodelswerebuilt topredictthe
selectivity of PHG voxels for large human-made objects from white matter (WM) connectivity patterns in both groups. These models were then
tested using independent data from participants with similar visual experience (two sighted groups) and using data from participants with
different visual experience (blind and sighted groups). Strikingly, the WM-based predictions between blind and sighted groups were as success-
fulaspredictionsbetweentwoindependentsightedgroups.Thatis, thefunctionalselectivityforlargeobjectsofaPHGvoxel inablindparticipant
could be accurately predicted by its WM pattern using the connection-to-function model built from the sighted group data, and vice versa.
Regions that significantly predicted PHG selectivity were located in temporal and frontal cortices in both sighted and blind populations. These
results show that the large-scale network driving domain selectivity in PHG is independent of vision.
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Introduction
The ventral occipital temporal cortex (VOTC), the higher-order
“what” visual pathway, contains clusters showing differential sensi-

tivity to visual stimuli of various domains of objects, such as scenes,
animals, or tools, with a general broad animate–inanimate distinc-
tion (Kriegeskorte et al., 2008; Kanwisher, 2010; Konkle and
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Significance Statement

Recent studies have reported intriguingly similar domain selectivity in sighted and congenitally blind individuals in regions
within the ventral visual cortex. To examine whether these similarities originate from similar innate connectional roots, we
investigated whether the domain selectivity in one population could be predicted by the structural connectivity pattern of the
other. We found that the selectivity for large objects of a PHG voxel in a blind participant could be predicted by its structural
connectivity pattern using the connection-to-function model built from the sighted group data, and vice versa. These results reveal
that the structural connectivity underlying domain selectivity in the PHG is independent of visual experience, providing evidence
for nonvisual representations in this region.
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Caramazza, 2013; Grill-Spector and Weiner, 2014). A recent
wave of studies reported similar domain selectivity across input
modalities in sighted and congenitally blind individuals, including se-
lectivity for scenes, bodies, words, tools, and large human-made
objects (Mahon et al., 2009; Wolbers et al., 2011; Striem-Amit et
al., 2012; He et al., 2013; Peelen et al., 2013; Kitada et al., 2014;
Striem-Amit and Amedi, 2014; for review, see Ricciardi et al.,
2014; Bi et al., 2016). These results indicate that visual experience
is not necessary for producing selectivity to object domains in the
VOTC, which is in contrast to the common view that such selec-
tivity is driven by visual experience (Ricciardi et al., 2014).

What drives the similar domain selectivity in blind and
sighted individuals? One way to address the nature of the similar
domain preference across blind and sighted groups is to examine
whether they are shaped by similar innate structural connectional
constraints. It has been hypothesized that the connectivity pat-
tern of a region determines what is represented/computed there
(Passingham et al., 2002; Mahon and Caramazza, 2011). Re-
cently, it has been found that the extent of the domain selectivity
of a voxel can be predicted from its white matter (WM) connec-
tivity pattern, especially in regions where the domain selectivity is
strong (Saygin et al., 2011, 2016; Osher et al., 2016). Taking ad-
vantage of this approach, we tested whether the domain selectiv-
ity in blind and sighted individuals in one particular VOTC
region—the parahippocampal gyrus (PHG)—is shaped by simi-
lar connectional constraints. Among the various subregions of
the VOTC, the PHG exhibits particularly robust multimodal se-
lectivity for scenes, buildings, and large objects (for review, see
Ricciardi et al., 2014; Bi et al., 2016). He et al. (2013) reported that
when blind subjects and sighted subjects listened to the names of
large objects such as “couch” or “refrigerator” in contrast to small
tools and animals, the PHG was significantly more strongly acti-
vated, and this activation overlapped well with the parahip-
pocampal place area (Epstein and Kanwisher, 1998; Epstein,
2008). These findings were replicated in the study by Wang et al.
(2015) and are consistent with the findings in the study by Wol-
bers et al. (2011), who reported that in both blind and sighted
subjects, haptic exploration of Lego scenes elicited stronger acti-
vation in the PHG than did the exploration of Lego objects. We
thus used the selectivity for large objects in PHG as a test case for
the effect of visual experience in the mapping between white
matter connectivity and regional functional preferences.

We collected task-based functional responses and diffusion-
weighted imaging (DWI) data from the following three groups of
participants: a congenitally blind group and two independent
sighted groups. The key question is whether the accuracy of the
sighted– blind prediction (i.e., building the connection-to-
function prediction model in one group and testing it in another
group) is comparable to that of the predictions between the two
sighted groups, and whether these predictions relied on similar
connections.

Materials and Methods
Participants
A group of congenitally blind individuals and two independent groups of
sighted individuals underwent both the functional MRI and the DWI
sessions.

For the congenitally blind group, 16 individuals participated in the
experiments, but 2 were excluded from the data analysis due to unex-
pected pre-existing brain abnormalities discovered by MRI. The remain-
ing 14 blind participants were between the ages of 26 and 60 years (mean
age, 44 � 10 years; 7 females), all were right handed and had completed
9 –15 years of education (mean, 11 � 2 years of education). All partici-
pants were from the subject cohort in our previous studies (He et al.,
2013; Peelen et al., 2013). All blind participants reported that they had
been blind since birth. Because medical records concerning the onset of
blindness were not available for most participants, it cannot be ruled out
that some of the participants may have had vision very early in life. None
of the participants remembered ever having been able to visually recog-
nize patterns. Ten blind subjects were examined by an ophthalmologist
to confirm their blindness and to establish the causes, if possible. Five
blind participants reported having had faint light perception in the past.
Eight participants reported having faint light perception at the time of
testing.

For the sighted groups, the S1 group consisted of 15 college students
between the ages of 18 and 25 years (mean age, 22 � 2 years; 10 females),
and the S2 group included 7 sighted adults (2 females) whose age and
number of years of education were matched with the blind participants
(mean age, 42 � 10 years; age range, 26 –54 years; compared with the
blind group: t(19) � �0.64, p � 0.47; mean length of education, 12 � 2
years; range of length of education, 9 –15; compared with the blind
group: t(19) � 0.25, p � 0.80). All sighted participants were right handed.

All participants were native Mandarin Chinese speakers. None had
experienced psychiatric or neurological disorders, had ever sustained a
head injury, or were receiving treatment with any psychoactive medica-
tion. All participants completed a written informed consent form that
was approved by the institutional review board of Beijing Normal Uni-
versity Imaging Center for Brain Research and received monetary com-
pensation.

Data acquisition parameters
All data were collected with a 3 T Siemens Trio Tim scanner at the BNU
MRI center, using identical parameters across all participants.

A high-resolution 3D structural dataset was acquired by using a 3D-
MPRAGE sequence in the sagittal plane (TR, 2530 ms; TE, 3.39 ms; flip
angle, 7°; matrix size, 256 � 256; 144 slices; voxel size, 1.33 � 1 � 1.33
mm; acquisition time, 8.07 min).

BOLD signals were measured with an EPI sequence (TR, 2000 ms; TE,
30 ms; flip angle, 90°; matrix size, 64 � 64; voxel size, 3.125 � 3.125 � 4
mm; interslice distance, 4.6 mm; 33 slices; axial slice orientation).

DWI data were collected through two separate scans with identical
parameters (75 slices; TR, 10,000 ms; TE, 91 ms; FOV, 256 � 256 mm;
flip angle, 90°; voxel size, 2 � 2 � 2 mm; matrix size, 128 � 128; diffusion
weighting isotropically distributed along 30 directions; the first vol-
ume was designated the b0 volume, and the b value of other volumes
was 1000 s/mm 2). The two separate scans were averaged in the sub-
sequent analysis.

DWI tractography
We first parcellated each participant’s 3D structural T1 image into 90
cerebral regions according to the Automatic Anatomical Labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002) using the FMRIB Software Library
(FSL; RRID:SCR_002823; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; Smith et
al., 2004; Jenkinson et al., 2012). After parcellation, each participant’s T1
image was registered to his or her DWI image.

Previous studies have reported that the bilateral PHG exhibited “mul-
timodal” functional selectivity for large objects and scenes across sighted
and congenitally blind populations (Wolbers et al., 2011; He et al., 2013).
To directly test whether a shared algorithm underlies the functional se-
lectivity profile of the PHG between populations with and without visual
experience, the left and right PHG parcels were defined as seed regions of
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interest (ROIs). Probabilistic tractography was conducted from each
voxel in either of the two seed ROIs (i.e., the left or the right PHG),
targeting the remaining 89 AAL parcels (including the contralateral PHG
parcel). For the blind group and the age-matched S2 group, the proba-
bilistic diffusion tractography was performed with 25,000 streamline
samples per seed voxel using FSL-probtrackx (Behrens et al., 2003). For
the S1 group, the number of streamline samples was set to 5000 (Osher et
al., 2016). For each voxel within the seed ROI, the probability of its
connection to each of the 89 target parcels was calculated. Thus, a vector
of 89 connection probabilities was obtained for each seed voxel to reflect
its structural connectivity pattern.

Procedures and analyses for fMRI experiments
The functional imaging data from the congenitally blind group and the
age-matched S2 group were collected in a previous study (He et al., 2013)
and were reanalyzed here. Data from the S1 group were collected specif-
ically for the present study using the same procedures and scanning
parameters. In the scanner, all subjects participated in an auditory object
size judgment experiment. The sighted groups additionally participated
in a passive picture-viewing experiment.

The same objects were used for the auditory and visual experiments.
Stimuli were from three object categories—30 large human-made ob-
jects, 30 tools, and 30 animals. Large objects included furniture, appli-
ances, cars, buildings, and other common large, nonmanipulable objects;
tools included kitchen utensils, farm implements, and common house-
hold tools; animals included mammals, birds, insects, and reptiles (for
detailed information, see He et al., 2013).

In the auditory experiment, stimuli were presented in blocks of five
words, all from the same domain. Participants were instructed to think
about the size of the first object and to compare the subsequent objects to
the first one. If all five objects were comparable in size, participants
responded by pressing a button with the left index finger; if at least one of
the last four objects was different in size from the first one, participants
pressed a button with the right index finger. Participants were asked to
respond immediately after a response cue (auditory tone; duration, 200
ms) presented after the offset of the last item of a block. For each block,
each item lasted 2 s, and the last item was followed by a 4 s silent period
for response. Thus, each block lasted 14 s. Each block was followed by a
14 s period of silence. Participants took four runs of the size judgment
task. Each run lasted 4 min and 40 s and contained 10 blocks. The first
block of each run was for practice and thus was excluded from data
analysis, leaving a total of 36 blocks (12 repetitions per domain). The
order of blocks was pseudorandomized with the restriction that no two
consecutive blocks were from the same domain.

In the picture-viewing experiment, sighted participants passively
viewed grayscale photographs of objects corresponding to the items used
in the auditory experiment. The pictures were presented sequentially
(667 ms; inter-stimulus interval � 0) in blocks of 30 items from the same
domain (i.e., domain block). Each domain block lasted 20 s, followed by
a 20 s fixation period. Each domain block was repeated four times in
pseudorandomized order, with the restriction that no two consecutive
blocks were from the same domain. The single-run passive picture-
viewing task began with a 10 s fixation and lasted 8 min and 10 s in total.

fMRI data were analyzed using BrainVoyager QX version 2.3 (RRID:
SCR_013057). The first 28 s in each run of the auditory size judgment
task (the practice block) and 10 s in the run of the passive picture-viewing
task (fixation) were discarded. Preprocessing of the functional data in-
cluded 3D motion correction with respect to the first (remaining) vol-
ume of the run scanned closest to the 3D structural data for each
experiment, spatial smoothing (Gaussian filter, 6 mm full-width at half-
maximum), and temporal filtering [high-pass (general linear model
[GLM]-Fourier) filter: 0.006 Hz for the one-back picture-viewing exper-
iment and 0.003 Hz for other experiments]. For each participant, func-
tional data were then registered to her/his own anatomical data. For the
connectivity-based prediction of functional response (see below), the
functional and anatomical volumes were kept in each individual’s native
space for further analyses. Meanwhile, for predictions based on group-
average responses, the functional and anatomical volumes were trans-
formed into the standard Talairach space (Talairach and Tournoux,

1988) to generate group-average activation maps. We used a GLM to fit
the preprocessed functional time series. Three predictors of interest cor-
responding to the three object domain conditions and six predictors of
no interest corresponding to six head motion parameters were included.
For each participant in either fMRI experiment, t statistic images were
generated for the contrast of responses to large objects versus the average
of the responses to tools and animals. The t value in each voxel indicated
the degree of preference of the voxel for large objects relative to the other
two corresponding object categories.

The t statistic images were resampled into voxels of 2 � 2 � 2 mm in
size and registered to the corresponding individual’s DWI images using
FSL (Smith et al., 2004). As in the studies by Saygin et al. (2011) and
Osher et al. (2016), we were interested in predicting relative activation
values that were independent of task-specific parameters (e.g., degrees of
freedom), so we standardized the t values across voxels within each ROI
into z-scores for each participant. Specifically, the mean value of the t
statistics across all voxels in the corresponding ROI was subtracted from
the t value of each voxel, and the difference was then divided by the SD.

Connectivity-based prediction using linear regression
Largely following Saygin et al. (2011) and Osher et al. (2016), the rela-
tionship between the functional selectivity of each voxel and its structural
connectivity pattern was pursued through linear regression. The left and
right PHGs were analyzed separately.

Within-group modeling. Within-group modeling was first conducted
to test whether the selectivity for large objects in the PHG voxels was
predicted by its structural connectivity pattern in the experiments with
the blind group and the two sighted groups (Fig. 1). Analyzing each
participant group in either experiment independently, we adopted a
leave-one-subject-out cross-validation (LOOCV) routine to train the
linear regression model to learn the association between the functional
selectivity of each voxel (i.e., the standardized t value for the contrast of
large objects vs the average of tools and animals) and its structural con-
nectivity pattern (i.e., the vector of connection probabilities for the re-
maining 89 target parcels). Specifically, we concatenated data from all
voxels of N-1 participants to train the model. A stepwise regression algo-
rithm, which fits the model by beginning with an initial model and then
adding or removing predictors according to whether the inclusion or
exclusion of the predictor significantly changes the explanatory power of
the model, was used to determine the model coefficients. We then ap-
plied the regression coefficients obtained from training to predict the
remaining participant’s functional selectivity for each PHG voxel, given
its connectivity pattern (Fig. 1 A, B). Only the regression coefficients of
the predictors identified as significant ( p � 0.05) by the stepwise regres-
sion algorithm were applied during prediction, leaving those of unse-
lected predictors set to zero. Note that before modeling, each feature (the
connection probability between the seed voxel and the target parcel) was
standardized across voxels within each subject to keep in accord with the
standardization of functional selectivity t values and so that the model
coefficients of different predictors would be at the same scale. This
routine was repeated for each participant in each group from each
experiment.

Between-group modeling. The critical analyses are the between-group
predictions (Fig. 1C), which were performed to investigate whether the
underlying algorithm of the connectivity constraint on the local function
of the PHG was similar between sighted and congenitally blind partici-
pants. We first performed predictions between sighted and congenitally
blind populations by establishing the model based on data from all par-
ticipants belonging to one population in a particular experiment (e.g.,
sighted students or sighted controls in the auditory or the visual experi-
ment) and applied the obtained model to the other population for pre-
diction (e.g., congenitally blind in the auditory experiment) as well as for
the opposite direction. Predictions between the two sighted groups
were conducted in the same manner (Fig. 1C). The same stepwise
linear regression algorithm was used for modeling as in the within-
group modeling.

To test whether visual experience affects the structural connectional
constraints on the functional selectivity of the PHG, we compared the
performances of connectivity-based predictions between the congeni-

Wang, He et al. • Function–Connection Mapping in Blind and Sighted J. Neurosci., May 3, 2017 • 37(18):4705– 4716 • 4707



tally blind and the two sighted groups (i.e., between-blind-sighted) with
those between the two sighted groups (i.e., between-S1-S2) using boot-
strap resampling. The bootstrap resampling method (Efron and Tibshi-
rani, 1993; Kriegeskorte et al., 2008) was chosen because it does not
require the data being tested to meet specific distributional assumptions.
Specifically, we bootstrap resampled the between-blind-sighted and
between-S1-S2 prediction performances, recomputing the mean differ-
ence between them. The bootstrap resampling was repeated 5000 times
using SPSS Statistics Software version 19.0 (IBM; RRID:SCR_002865).

For all predictions, the performance was measured using the mean
absolute difference [mean absolute error (MAE)] between the predicted
t values and the actual t values across voxels within the ROI parcel sepa-
rately for each participant.

Characterizing important structural connections shared across models.
We investigated the specific structural connections that are important in
predicting the selectivity for large objects in the PHG across all models
(i.e., blind auditory, sighted auditory, sighted visual). Instead of using
LOOCV, which was used in the within-group predictions, here we built
each model by using data from all participants from the corresponding
experiment. To identify the critical predictors for each model, the corre-
lation matrix of the structural connections was first computed and the
model coefficients were left multiplied by this correlation matrix. This
was done to avoid omitting important predictors in case of high covari-
ance between different connections (Haufe et al., 2014). The newly gen-
erated model coefficients were then ranked separately for positive and
negative predictors. Those with top 10 high coefficients were considered
to be important predictors. The predictors that were shared across all
models were then identified. The sighted models were established based
on data from the S1 group (N � 15) to match with the sample size of the
blind group (N � 14).

Comparison with group-average models
We tested the validity of the connectivity model by comparing its perfor-
mance to a corresponding group-average benchmark model (Saygin et
al., 2011; Osher et al., 2016). That is, we evaluated whether the prediction
accuracy for the functional selectivity of a voxel for large objects accord-
ing to the structural connectivity pattern is greater than that from the
group-average model results.

For within-group predictions, the group-average model was established
via the same LOOCV routine as in the connectivity-based modeling. Specif-

ically, each participant’s functional data were spatially normalized into
Talairach space. A random-effect test was performed using BrainVoyager
on contrast images for the large objects � average of animals and tools
contrast from N-1 participants, and the resulting t map was then regis-
tered to the remaining participant’s DWI space, generating a prediction
map for that participant. MAE was then computed between the group-
average model predicted t values and the actual t values (both standard-
ized) within the PHG parcel separately for each participant. We
compared the MAEs of the connectivity model with those of the group-
average model across participants using the bootstrap resampling
method, which was repeated 5000 times on the paired MAEs of the
connectivity model and those of the group-average benchmark model
using SPSS Statistics Software version 19.0 (IBM).

For between-group predictions, the group average-based predictions
within the sighted visual experiments (collapsing the two sighted groups)
were taken as the benchmark model for all types of between-group
connectivity-based predictions, given that the within-visual group-average
predictions exhibited the best performances (i.e., lowest MAEs) across all
benchmark models and thus were considered to be the most stringent
baseline. Specifically, the MAEs of connectivity-based predictions be-
tween the auditory experiment with the blind subjects and the auditory
experiments with the two sighted groups, the MAEs between the blind
auditory experiment and visual experiments of the two sighted groups,
and the MAEs between the two sighted visual experiments (collapsing all
prediction combinations and directions) were compared separately with
the MAEs of group average-based within-group predictions using boot-
strap resampling for independent samples.

Connectivity-based predictions using nonlinear support
vector regression
Considering that the relationship between the function and the connec-
tivity pattern may be nonlinear, we explored the potential nonlinear
relationships by applying a nonlinear support vector regression (SVR)
algorithm to the connectivity-based prediction of the functional selec-
tivity of each voxel. Specifically, we examined whether the prediction
performances could be improved in general and, more critically,
whether differences between within-population (i.e., between the two
sighted groups) and between-population (i.e., between blind and
sighted populations) decoding emerged in the bilateral PHG. These
predictions followed procedures similar to those for linear regression

Figure 1. Analytical scheme. A, B, The mapping algorithm f(x) between functional selectivity and WM connectivity pattern was established through A and tested through B. For within-group
predictions, an LOOCV procedure was followed, with the model built based on data from N-1 subjects and tested on the data from the remaining subject from the same group. For
between-group predictions, the model was built based on data from all subjects from one group and tested on each subject from a different group. C, Critical comparisons of between-group
connectivity-based predictions were performed to test the effect of visual experience and visual input on the connectivity constraints of local functional selectivity.
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predictions, except that we trained the connectivity model using
LIBSVM (Chang and Lin, 2011) with the nonlinear radial basis function
kernel (http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf).

Validation analyses
We evaluated our results in different measurements of model perfor-
mance and further examined whether our main results were explained by
anatomical geometry by making predictions based on distance models.
The procedures were as described below.

Model performances measured by correlations. In addition to MAEs, we
also used Pearson correlations between predicted and actual t values
across all voxels in the PHG parcels to measure the prediction perfor-
mances. We computed the Pearson r values for the predictions using the
linear connectivity models. Similar to the main analyses, the perfor-
mances of connectivity-based predictions between the congenitally blind
and the two sighted groups were compared with those between the two
sighted visual experiments to test whether visual experience affects the
pattern of structural connectional constraints on the functional selectiv-
ity of the PHG. Similar bootstrap resampling methods were used for
statistical comparisons. The r values were Fisher transformed before
comparison.

Comparisons to distance models. Considering that the connection
probabilities might be biased by the distance between the seed voxel and
target regions (Hilgetag and Kaiser, 2004; Sporns and Zwi, 2004), we
further tested whether the results in the connection model could be
explained by covariations between local function and anatomical geom-
etry. We computed prediction accuracies based on distance models and
compared the performances of the connectivity models using bootstrap
resampling. The distance models were identical to the connectivity mod-
els except that the predictors were the Euclidean distance between the
PHG voxels and the center of mass of the target brain parcel. Similar to
the connectivity models, features were first standardized across voxels
within each participant before modeling.

Results
The bilateral PHG in the AAL template (Tzourio-Mazoyer et al.,
2002), containing clusters showing selectivity for large objects,
were chosen as ROIs for analyses designed to examine the effect of
visual experience on WM connectivity and its mapping with
functional selectivity. We largely followed the procedures used in
the studies by Saygin et al. (2011) and Osher et al. (2016) to
predict functional selectivity from WM connectivity with linear
regression models. We also used nonlinear SVR models to cap-
ture potential effects in the structure-to-function mapping that
are nonlinear, and obtained results that are largely similar to
those found using linear regression models. Furthermore, we val-
idated our main results by comparing them to distance models
and using additional model performance measurement. The crit-
ical focus here is on the degree to which visual experience influ-
ences the pattern of WM connectional constraints on functional
selectivity [i.e., the comparison of prediction accuracies between
groups that shared (two independent sighted groups) or differed
in (sighted vs blind groups) visual experience (Fig. 1, analytical
scheme)].

WM connectivity of PHG voxels can predict functional
selectivity within both sighted and blind groups
The structural connectivity pattern of each PHG voxel was de-
fined as a vector of its connection probabilities with the 89 target
AAL parcels, as obtained from probabilistic tractography. Adopt-
ing the LOOCV routine, we trained the linear regression model to
predict the functional selectivity of each seed voxel for large ob-
jects (i.e., the response difference between large objects and the
average of animals and tools measured as a t statistic) based on its
whole-brain WM connectivity pattern. The absolute error be-
tween the t value predicted from the WM connectivity pattern

and the actual t statistic was calculated per voxel, and the MAE
was obtained by averaging all voxels in each PHG ROI for each
participant to measure the performance of the model. For a
benchmark model, predictions of the selectivity of PHG voxels
for large objects were made based on group-average activations
using the same LOOCV procedure following the studies by Say-
gin et al. (2011) and Osher et al. (2016) (for detailed information,
see Materials and Methods). Bootstrap resampling was con-
ducted between the MAEs of connectivity-based predictions and
those of group average-based predictions across participants
within each experiment (for sighted participants, the two inde-
pendent groups were collapsed).

As presented in Table 1, for the left PHG, the WM connectivity-
based models significantly outperformed the group-average bench-
mark models in predicting the large-object selectivity in all
experiments with the blind and the sighted groups; for the right
PHG, a similar pattern was observed. As an example, Figure 2
shows the voxelwise map of functional selectivity for large objects
predicted by the WM connectivity, along with the actual func-
tional selectivity maps in one blind participant (Fig. 2A) and one
sighted participant (Fig. 2B). The values in these maps are nor-
malized to the relative extent of functional selectivity across the
voxels in each PHG ROI, such that the negative values (Fig. 2,
cold-colored voxels) do not necessarily indicate a functional pref-
erence for animals and/or tools compared with large objects.
These results suggest a significant effect of WM connection prop-
erties in determining the functional selectivity to large objects in
bilateral PHG regions.

To rule out the possibility of false-positive results due to the
potential overfitting problem of the LOOCV method (Schreiber
and Krekelberg, 2013; Osher et al., 2016), we further validated the
within-group prediction results by training and testing models
on independent groups. Specifically, for sighted participants, we
built the model from connectional and functional data of the S1
group and tested it on each participant from the S2 group, and
vice versa (see Between-group modeling in Materials and Meth-
ods), while for the blind group we did a split-half analysis to build
the model from half of the participants and test it on the other
half of the participants. Similar to the results obtained using the
LOOCV method, we observed significantly better or trends of
better performances of the connectivity-based predictions com-
pared with corresponding group-average benchmark-based pre-
dictions using bootstrap resampling in the bilateral PHG regions
for both visual (left PHG: mean difference � �0.049 � 0.029,
p � 0.059; right PHG: mean difference � �0.076 � 0.023, p �
0.007) and auditory experiments (left PHG: mean difference �
�0.097 � 0.020, p � 0.001; right PHG: mean difference �
�0.172 � 0.030, p � 0.001) of sighted participants, and also in
the auditory experiments of the blind group (left PHG: mean

Table 1. Comparison of within-group prediction performances between the linear
regression connectivity model and the group-average model

Connectivity
(MAE � SEM)

Group average
(MAE � SEM)

Mean difference
(�SEM)

Boostrap
significance

L PHG
Blind auditory (n � 14) 0.76 � 0.018 0.84 � 0.050 �0.077 � 0.037 0.038
Sighted auditory (n � 22) 0.79 � 0.027 0.90 � 0.044 �0.110 � 0.026 0.001
Sighted visual (n � 22) 0.78 � 0.023 0.85 � 0.047 �0.075 � 0.032 0.019

R PHG
Blind auditory (n � 14) 0.79 � 0.014 0.97 � 0.037 �0.174 � 0.031 �0.001
Sighted auditory (n � 22) 0.83 � 0.033 0.97 � 0.046 �0.135 � 0.029 0.001
Sighted visual (n � 22) 0.79 � 0.025 0.89 � 0.045 �0.105 � 0.027 0.001

L, Left; R, right.
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difference � �0.077 � 0.032, p � 0.017; right PHG: mean dif-
ference � �0.164 � 0.021, p � 0.001).

The performances of predictions between blind and sighted
groups were as good as those of the predictions between the
two sighted groups
To examine whether visual input influences the pattern of WM
connectional constraints on functional selectivity, we compared
the performances of between-blind-sighted connectivity-based
predictions with those of the predictions between visual experi-
ments of the two sighted groups using bootstrap resampling. We
found that the MAEs of connectivity-based predictions between
blind and sighted auditory experiments were not statistically dif-
ferent from those of predictions between visual experiments in
the two sighted groups for both PHG ROIs (left PHG: mean
difference � �0.008 � 0.027, p � 0.776; right PHG: mean dif-
ference � 0.024 � 0.03, p � 0.404; Fig. 3). A similar pattern was
observed when connectivity-based predictions between blind au-
ditory and sighted visual experiments were compared with those
between the two sighted visual experiments (left PHG: mean dif-
ference � �0.019 � 0.027, p � 0.484; right PHG: mean differ-
ence � 0.008 � 0.029, p � 0.770; Fig. 3). The voxel-based
functional selectivity maps for large objects in the bilateral PHG
that were generated through blind-sighted predictions and S1-S2
predictions were visualized in Figure 2 for one blind participant
(Fig. 2A) and one sighted student participant (Fig. 2B).

Note that the sample sizes were not fully matched in the
between-blind-sighted and between-S1-S2 comparison. We thus

matched the sample sizes in these two types of predictions, per-
forming between-blind-sighted predictions with the 14 blind
participants and only the 7 participants from the S2 group. The
results were the same (blind auditory-S2 auditory compared with
S1-S2 visual: left PHG: 0.76 � 0.013 vs 0.79 � 0.023, mean dif-
ference � �0.026 � 0.027, p � 0.352; right PHG: 0.77 � 0.014 vs
0.79 � 0.026, mean difference � �0.020 � 0.029, p � 0.489;
blind auditory-S2 visual compared with S1-S2 visual: left PHG:
0.75 � 0.016 vs 0.79 � 0.023, mean difference � �0.042 � 0.029,
p � 0.158; right PHG: 0.78 � 0.017 vs 0.79 � 0.026, mean differ-
ence � 0.018 � 0.030, p � 0.535).

We also compared the performances of between-modality
(sighted visual-sighted auditory) WM connectivity-based predic-
tions with those of the connectivity-based predictions between
the two sighted visual experiments. Comparable prediction per-
formances were observed in the bilateral PHG for the between-
modality predictions and predictions between the two sighted
visual experiments (Fig. 3; between-modality vs between-visual:
left PHG: mean difference � 0.015 � 0.030, p � 0.646; right
PHG: mean difference � 0.029 � 0.033, p � 0.407).

In addition, we also validated the between-group connectivity
models by comparing the performance of the between-group
connectivity-based predictions with that of the group-average
benchmark model. The group average-based predictions within the
sighted visual experiments were taken as the benchmark model for
all types of the between-group connectivity-based predictions. As
shown in Figure 3, the MAEs of connectivity-based predictions be-
tween the visual experiments of the two sighted groups were signif-

Figure 2. A, B, Actual and predicted fMRI activation to large objects � (animal � tools) in the bilateral PHG of one congenitally blind participant (A) and one sighted participant (B) from the S1
group. For each participant, actual and predicted activation images (t statistic values for large objects � animals � tools) were registered from the DWI structural image to the same participant’s
T1 structural scan and then registered and projected to the brain surface in the standard MNI space. Each heading indicates the experiment from which the prediction model was built. Activation
projection was achieved using BrainNet Viewer (RRID:SCR_009446; Xia et al., 2013). Color scales are in standardized units.
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icantly lower than those of the within-visual benchmark model in
bilateral PHG ROIs (connectivity vs benchmark: left PHG: mean
difference � �0.066 � 0.033, p � 0.04; right PHG: mean differ-
ence � �0.098 � 0.030, p � 0.003; one-tailed test). Performances
significantly better than the benchmark were also observed for the
connectivity-based predictions between the blind auditory and the
two sighted visual experiments (connectivity vs benchmark: left
PHG: mean difference � �0.085 � 0.050, p � 0.05; right PHG:
mean difference � �0.089 � 0.044, p � 0.03; one-tailed test).
Trends of better performances of connectivity model compared with
the group-average benchmark model were observed for the predic-
tions between the blind auditory and the two sighted auditory exper-

iments (connectivity vs benchmark: left PHG: mean difference �
�0.074 � 0.049, p � 0.08; right PHG: mean difference � �0.073 �
0.048, p � 0.07; one-tailed test) as well as for the between-modality
predictions in the two sighted groups (connectivity vs benchmark:
left PHG: mean difference � �0.052 � 0.051, p � 0.16; right PHG:
mean difference � �0.069 � 0.052, p � 0.10; one-tailed test).

We also performed the above analyses in more restricted para-
hippocampal functional ROIs, which showed selectivity to large
nonmanipulable objects (uncorrected p � 0.05) across the blind
auditory, sighted auditory, and sighted visual experiments. These
ROIs were considered as they exhibited multimodal domain se-
lectivity and thus were more directly related to our hypothesis.

Figure 3. Bar plots of between-group and between-modality connectivity-based prediction performances using linear regression models of the bilateral PHG. The y-axis indicates the MAE of the
predictions. Error bars indicate the SE of the MAE. Asterisks and pound signs indicate the significance levels of differences between the connectivity-based predictions (gray) and the group-average
benchmark-based predictions (dashed). *p � 0.05; #0.05 � p � 0.1.
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The same pattern of results was observed when using these mul-
timodal large-object-selective parahippocampal ROIs as seeds.

Characterizing critical WM connectional constraints of the
selectivity of the PHG for large objects
We further revealed the communal WM connectional con-
straints on the selectivity of the PHG for large objects in the blind
and sighted groups. Taking the potential collinearity of different
predictors into consideration (see Materials and Methods), we
identified positive and negative predictors with top 10 highly
ranked model coefficients separately for the models built from
the auditory experiment in the blind group and the visual and
auditory experiments in the S1 group, respectively (Fig. 4, Table
2). The connections with top-ranked coefficients tended to be
consistent across the three models, as follows: for the left PHG,
the top positive predictors in all models were its connections with
the lingual, hippocampus, and inferior temporal cortices in the
left hemisphere; the top negative predictors were the connections
with the left superior and middle part of the temporal pole, the
orbital part of the left inferior frontal cortex, the left amygdala,
and the bilateral olfactory cortices; and for the right PHG, the top
positive predictors across all models included its connections
with the fusiform gyrus, lingual gyrus, hippocampus, and the
precuneus in the right hemisphere.

Connectivity-based predictions using nonlinear SVR
Thus far, we have used linear models throughout, based on the pro-
cedures in the studies by Saygin et al. (2011) and Osher et al. (2016).
The advantage of a linear model is that the predictor coefficients are
mathematically interpretable, such that we can identify the struc-
tural connections that provide contributions that are important for
predicting its local function. Nonetheless, the relationship between
the function and the connectivity pattern may well be nonlinear. We
thus also explored the potential nonlinear relationships by applying
a nonlinear SVR model in the connectivity-based predictions of the
functional selectivity of each ROI.

First, we examined whether the nonlinear SVR model made
significantly better predictions than the group-average benchmark

model. As presented in Table 3, all of the within-experiment predic-
tions based on the nonlinear SVR connectivity model significantly out-
performed those based on the corresponding group-average model in
the bilateral PHG ROIs. Validation analyses that trained and
tested models using independent groups confirmed the similar
pattern of results for both ROIs (connectivity vs group-average
benchmark: p values �0.034).

Between-group (as well as between-modality) connectivity-
based predictions using nonlinear SVR were then conducted
(Table 4). Similar to the results obtained using linear regression,
the prediction performances between blind and sighted auditory
experiments were comparable to those of the predictions be-
tween visual experiments of the two sighted groups for bilateral
PHG ROIs (blind auditory-sighted auditory compared with
S1-S2 visual: left PHG: mean difference � �0.001 � 0.027, p �
0.961; right PHG: mean difference � 0.036 � 0.033, p � 0.267).
A similar pattern was observed when predictions between blind
auditory and sighted visual experiments were compared with the
predictions between the two sighted visual experiments (blind
auditory-sighted visual compared with S1-S2 visual: left PHG:
mean difference � �0.011 � 0.027, p � 0.675; right PHG: mean
difference � 0.016 � 0.031, p � 0.617). The comparison of the
MAEs of predictions between the visual and auditory experi-
ments of the two sighted groups and those of the predictions
between the two sighted visual experiment indicated a similar
pattern in the bilateral PHG (between-modality compared with
S1-S2 visual: left PHG: mean difference � 0.017 � 0.030, p �
0.563; right PHG: mean difference � 0.034 � 0.036, p � 0.349).

We further tested whether the nonlinear SVR algorithm out-
performed the linear regression models that we used in the main
analyses to explore any potential existence of a nonlinear rela-
tionship between the connectivity pattern and the local func-
tional profile. Bootstrap resampling was performed on the MAEs
of predictions using the nonlinear SVR algorithms and those of
the predictions using linear regression models for each prediction
combination. As shown in Table 5, although generally lower
MAEs were observed for connectivity-based predictions using
nonlinear SVR than with the linear regression algorithm across

Figure 4. Important connection predictors for the blind auditory, sighted auditory, and sighted visual experiments. The connectivity model coefficients of the top 10 important predictors were
projected onto the brain for the bilateral PHG. Warm colors indicate positive model weights, and cold colors indicate negative weights.
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all prediction types, only the following comparisons showed
statistically significant differences: (1) the predictions of the
functional selectivity of the bilateral PHG between the visual ex-
periments with the two sighted groups and between the auditory
and visual experiments with the two sighted groups; (2) the pre-
diction of the functional selectivity of the right PHG within the

two sighted visual experiments; and (3) the prediction of the
functional selectivity of the right PHG between the blind auditory
and sighted visual experiments.

Together, there indeed seems to be some kind of complex and
nonlinear relationship between structural connectivity and local
function, as we observed some (although not consistent) im-
provement of the predictions using nonlinear SVR algorithm
relative to those using linear regression. Importantly here, the
performances of the blind-sighted and the between-modality
predictions in bilateral PHG were still comparably successful

Table 2. List of important predictors

Blind auditory Sighted auditory (S1) Sighted visual (S1)

Top 10 predictors Coefficient Top 10 predictors Coefficient Top 10 predictors Coefficient

L PHG
Positive L Fusiform 0.17062 L Fusiform 0.1659 L Hippocampus 0.1666

L Inferior temporal 0.13529 L Hippocampus 0.1524 L Lingual 0.1587
L Lingual 0.12078 L Inferior temporal 0.1236 L Inferior temporal 0.1498
L Middle temporal 0.10552 L Lingual 0.0954 L Frontal medial orb 0.1382
L Hippocampus 0.08883 L Frontal medial orb 0.0628 R Calcarine 0.1150
L Putamen 0.08065 R Rolandic operculum 0.0218 R Precuneus 0.1095
R Hippocampus 0.07817 R Middle frontal 0.0158 R Inferior temporal 0.1006
L Calcarine 0.07366 R Inferior frontal operculum 0.0134 R Fusiform 0.1004
L Inferior occipital 0.06969 R Insula 0.0055 R Hippocampus 0.0999
R Thalamus 0.06599 R Heschl 0.0046 R Middle temporal 0.0998

Negative L Temporal pole sup �0.1678 L Temporal pole sup �0.1730 L Temporal pole sup �0.2031
L Amygdala �0.1128 L Amygdala �0.1445 L Amygdala �0.1535
L Inferior frontal orb �0.1048 L Inferior frontal orb �0.0923 L Inferior frontal orb �0.0875
L Olfactory �0.0543 L Olfactory �0.0841 L Temporal pole mid �0.0657
R Inferior frontal orb �0.0265 L Superior frontal orb �0.0607 L Olfactory �0.0428
L Temporal pole mid �0.0226 L Temporal pole mid �0.0605 L Rectus �0.0364
R Olfactory �0.0206 R Olfactory �0.0544 L Pallidum �0.0241
R Supplementary motor area �0.0197 R Parahippocampal �0.0499 R Olfactory �0.0240
R Precentral �0.0181 R Inferior frontal orb �0.0487 L Middle frontal orb �0.0231
L Paracentral �0.0150 L Putamen �0.0460 R Anterior cingulate �0.0220

R PHG
Positive R Hippocampus 0.1990 R Hippocampus 0.1864 R Hippocampus 0.1856

R Fusiform 0.0859 R Fusiform 0.1690 R Fusiform 0.1688
R Lingual 0.0748 R Lingual 0.0350 R Lingual 0.1279
L Middle frontal orb 0.0310 R Precuneus 0.0221 R Superior occipital 0.0633
R Precuneus 0.0232 L Superior frontal med 0.0038 R Middle occipital 0.0615
R Calcarine 0.0011 L Anterior cingulate 0.0035 R Cuneus 0.0602
L Anterior cingulate 0.0009 R Posterior cingulate 0.0568

R Precuneus 0.0507
L Precuneus 0.0499
R Inferior occipital 0.0497

Negative R Inferior parietal �0.1857 R Amygdala �0.1116 R Amygdala �0.1619
R Middle cingulate �0.1845 R Temporal pole superior �0.1062 R Temporal pole sup �0.1563
R Superior parietal �0.1845 L Thalamus �0.0927 R Inferior frontal orb �0.1068
R Rolandic operculum �0.1779 L Amygdala �0.0922 R Olfactory �0.0854
L Middle cingulate �0.1776 L Superior temporal �0.0918 R Temporal pole mid �0.0852
L Rolandic operculum �0.1753 L Superior occipital �0.0868 L Olfactory �0.0710
R Supramarginal �0.1753 R Superior temporal �0.0847 R Anterior cingulate �0.0681
L Supramarginal �0.1644 L Middle temporal �0.0847 R Rectus �0.0624
L Paracentral �0.1640 L Middle occipital �0.0847 L Rectus �0.0549
L Superior parietal �0.1629 L Putamen �0.0843 L Pallidum �0.0510

Bold type indicates predictors shared across experiments. L, Left; R, right; orb, orbital; sup, superior; mid, middle.

Table 3. Comparison of within-group prediction performances between nonlinear
SVR connectivity model and group-average benchmark model

Connectivity
(MAE � SEM)

Group average
(MAE � SEM)

Mean difference
(�SEM)

Boostrap
significance

L PHG
Blind auditory (n � 14) 0.76 � 0.017 0.84 � 0.050 �0.081 � 0.036 0.032
Sighted auditory (n � 22) 0.79 � 0.028 0.90 � 0.044 �0.113 � 0.024 0.001
Sighted visual (n � 22) 0.78 � 0.023 0.85 � 0.047 �0.079 � 0.032 0.017

R PHG
Blind auditory (n � 14) 0.80 � 0.018 0.97 � 0.037 �0.171 � 0.028 �0.001
Sighted auditory (n � 22) 0.84 � 0.036 0.97 � 0.046 �0.130 � 0.027 �0.001
Sighted visual (n � 22) 0.79 � 0.026 0.89 � 0.045 �0.113 � 0.026 0.001

L, Left; R, right.

Table 4. Performances of between-group and between-modality connectivity-
based predictions using nonlinear SVR

MAE (�SEM)

L PHG R PHG

Blind auditory-sighted auditory (n � 50) 0.78 � 0.014 0.81 � 0.018
Blind auditory-sighted visual (n � 50) 0.77 � 0.013 0.80 � 0.015
Sighted auditory-sighted visual (n � 44) 0.80 � 0.018 0.81 � 0.023
S1 visual-S2 visual (n � 22) 0.78 � 0.023 0.78 � 0.027

L, Left; R, right.
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even with such a model, suggesting the existence of similar un-
derlying algorithms for the function of the PHG in blind and
sighted individuals.

Validation results
Testing the model using Pearson r values as measurement
for performances
Using the correlation to measure model performance yielded re-
sults similar to those reported in the main results using MAE as
performance measures, as follows: all of the between-blind-
sighted (as well as between-modality) connectivity predictions
were statistically comparable to those of the predictions between
visual experiments in the two sighted groups (Table 6). We also
performed between-blind-sighted predictions with the 14 blind
participants and only the 7 participants from S2 group to
matched sample sizes with the between-S1-S2 predictions. The
results remained the same.

Comparisons with distance model
To ensure that our results were not simply explained by anatom-
ical distance, we compared the connectivity model with a dis-
tance model in which the Euclidean distances between PHG
voxels and the center of mass of other target brain parcels rather
than the connectivity probabilities were taken as predictors. The
distance models performed poorly in both within-group and
between-group predictions of the functional selectivity of the
bilateral PHG [left PHG: MAEs � 2.74 (SEM � 0.29); right PHG:
MAEs � 3.39 (SEM � 0.46)]. The connectivity model signifi-
cantly outperformed the distance model in all predictions in both
PHG ROIs (p values �0.034) except for the within-group pre-
dictions of the functional selectivity of the right PHG in the visual
experiments of the two sighted groups, which approached signif-
icance (p � 0.06).

Discussion
By examining the mapping between the white matter connectivity
pattern and domain selectivity in congenitally blind and sighted
populations, we showed that the connectivity-to-function predic-
tions between blind and sighted groups were as successful as pre-
dictions between two sighted groups, suggesting that the way in
which the WM pattern predicts large-object selectivity in the
PHG is not affected by visual experience. Specifically, the func-
tional selectivity of a voxel in blind subjects can be predicted by its
WM pattern using the WM-to-function prediction model built
from the sighted group data, and vice versa. The linear regression
prediction model further revealed that the critical WM connection

predictors for the selectivity of the PHG for large human-made ob-
jects in both the sighted and blind groups were its connections with
adjacent regions in the medial temporal and occipital cortices.

Our results provide an important step forward from the re-
cent line of studies reporting similar domain-specific effects in
congenitally blind and sighted participants (Mahon et al., 2009;
Wolbers et al., 2011; He et al., 2013; Peelen et al., 2013; Kitada et
al., 2014; Striem-Amit and Amedi, 2014; for review, see Ricciardi
et al., 2014). While it has been argued that these results generally
indicate that the relevant regions are supramodal or multimodal
rather than visual (Ricciardi et al., 2014) and that they may be
constrained by innate connections (Mahon and Caramazza,
2011; see also Reich et al., 2011), an important counterargument
for the implications of studies in special populations is that the
results cannot be generalized to the typical population (Gainotti,
2015). Although both the blind and sighted groups show similar
domain specificity, different types of representations might be
involved (but see Peelen et al., 2014, which shows similar shape
representation for small artifacts in the VOTC for blind and
sighted groups). For instance, it is possible that for sighted peo-
ple, clusters in the PHG process certain visual features that are
most strongly associated with large objects and scenes, whereas
the PHG in the blind group undergoes plastic changes and pro-
cesses certain nonvisual aspects that are most strongly associated
with large objects and scenes. Our results challenge this hypoth-
esis by showing that the functional characteristics of PHG have
similar roots in WM connectivity in the two groups; that is, a
similar set of structural connections are relevant for the com-
putations in PHG independent of visual input and experience.

Based on the assumption that structural connections con-
strain local function (Passingham et al., 2002; Mahon and Cara-
mazza, 2011; Saygin et al., 2011; Osher et al., 2016), one way to
test whether visual experience modulates the local functional rep-
resentation is to directly compare the white matter connectional
profiles in sighted and blind participants. Several previous studies
that examined the effect of visual deprivation on white matter
structures did not observe a significant alteration of WM connec-
tivity in PHG. When the fractional anisotropy of the white matter
was compared between sighted and blind adults across the whole
brain, a significant decrease in fractional anisotropy associated
with blindness was only observed for the geniculocalcarine tract
(Shu et al., 2009a; Wang et al., 2013). Shu et al. (2009b) compared
multiple white matter network properties between early blind
and sighted control subjects and observed plastic changes only in
the primary systems, with reduced connectivity strength and
communication efficiency in the primary visual cortex and in-
creased connectivity strength and efficiency in the primary motor
and somatosensory areas. Additional decreases in connectivity
strength and communication efficiency were later observed in
frontal regions (Li et al., 2013).

However, similar WM connectional patterns of PHG in
sighted and blind groups do not necessarily mean that the WM
connectivity pattern constrains its function in the same manner.
For example, the same subjects may produce different functional
response profiles in a particular brain region when performing
different tasks. In the current context, Wang et al. (2015) showed
that sighted subjects had different category response profiles in
posterior lateral fusiform and inferior occipital gyrus when view-
ing pictures and when listening to names, indicating that differ-
ent tasks can recruit different sets of connections within an
identical white matter background.

Our results, showing that the predictions of the selectivity of
the PHG for large objects based on its WM pattern are as success-

Table 5. Comparison of the performances (MAE) of connectivity-based predictions
using nonlinear SVR and linear regression algorithms

L PHG R PHG

Mean difference
(�SEM)

Bootstrap
significance

Mean difference
(�SEM)

Bootstrap
significance

Blind auditory (n � 14) �0.004 � 0.003 0.271 0.003 � 0.004 0.496
Sighted auditory (n � 22) �0.003 � 0.004 0.481 0.004 � 0.005 0.460
Sighted visual (n � 22) �0.004 � 0.003 0.200 �0.008 � 0.003 0.024
Blind auditory-sighted

auditory (n � 50)
�0.003 � 0.002 0.187 �0.003 � 0.003 0.256

Blind auditory-sighted
visual (n � 50)

�0.002 � 0.002 0.393 �0.007 � 0.003 0.015

Sighted visual-sighted
auditory (n � 44)

�0.008 � 0.003 0.011 �0.010 � 0.003 0.004

S1 visual-S2 visual (n � 22) �0.010 � 0.004 0.019 �0.015 � 0.004 0.003

Negative mean difference indicates better performance of predictions using nonlinear SVR than those using linear
regression. L, Left; R, right.
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ful across sighted and blind populations as the predictions be-
tween the two sighted groups, provide direct evidence that the
functional selectivity of the PHG shares highly similar structural
connectivity origins with and without visual input. That is, the
functional responses to large objects recruit similar sets of con-
nections with similar weight settings. Across experiments, the
structural connections of the PHG that have strong predictive
power on its functional selectivity are those with adjacent tempo-
ral and occipital regions (positive function) and those with the
superior and middle parts of the temporal pole, inferior frontal
cortex, and amygdala (negative function). The observed role of
connections with lingual gyrus and precuneus cortex, which is
near the retrosplenial cortex, is consistent with the hypothesis
that the preference of the PHG for large objects is related to
navigation properties, as the retrosplenial cortex is also consis-
tently found to be associated with navigation (Epstein, 2008).
However, the effects of connections with inferior frontal, tempo-
ral pole, and amygdala remain to be further understood. Note
that, although it was not significant, a consistent trend of better
predictions performance (smaller MAEs) was observed for the
left relative to the right PHG (Fig. 3). In addition, more overlap-
ping important connections across groups were identified for the
left compared with the right PHG. These results suggest interest-
ing potential differences between left and right PHG, which needs
further investigation.

Finally, there are a few methodological issues to be further
addressed. First, we tested two potential ways in which the struc-
tural connectivity pattern may relate to local functions—linear
and nonlinear. Consistent with previous findings (Saygin et al.,
2011; Osher et al., 2016), the linear model was successful for all
within-group and between-group predictions, suggesting that at
least some proportion of the correspondence between structural
connectivity and local function follows a linear relationship. The
models built using nonlinear kernel SVR machine learning did
show some trend for improvement in performance over the lin-
ear models, although this improvement was not stable across
analyses. This suggests that there is a potentially nonlinear rela-
tionship between the structural connectivity pattern and local
function that merits consideration in future studies. Second, based
on studies with sighted individuals (Saygin et al., 2011; Osher et al.,
2016), we considered the structural connectivity pattern on the basis
of voxel-to-region mapping using an anatomically based regional
parcellation (i.e., AAL), neglecting potential differences within each
region. For instance, the peripheral-to-fovea distribution within
the primary system cannot be revealed at this scale. Recent anal-
yses of resting-state functional connectivity revealed that the pe-
ripheral/fovea retinotopic distribution correspondence from V1
to V2/V3 or even to higher-level cortices such as the fusiform face
area and the parahippocampal place area is preserved in the blind
(Bock et al., 2015; Striem-Amit et al., 2015). Thus, voxel-based
structural connectivity construction merits consideration in the
future. Third, our results are based on DWI data, which are prone
to errors at crossing fibers. Convergent evidence from other ap-

proaches dealing with these issues is desirable, particularly using
tract tracing in nonhuman primates.

In conclusion, we observed that the selectivity for large objects
of a voxel in bilateral PHG in blind subjects can be predicted
by its WM pattern using the connectivity-to-function predic-
tion model built from the sighted group data, and vice versa. The
connectivity-to-function predictions between blind and sighted
groups were as successful as predictions between two sighted
groups, indicating that the way in which the WM pattern predicts
large-object selectivity in the PHG is not affected by visual
experience. Our results provide further evidences for the vi-
sion independence of the selectivity of the bilateral PHG for large
human-made objects by showing that the functional profiles of
PHG have similar roots in white matter connectivity in blind and
sighted individuals.
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