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Humans process the meaning of the world via both verbal and nonverbal modalities.

It has been established that widely distributed cortical regions are involved in semantic

processing, yet the global wiring pattern of this brain system has not been considered in

the current neurocognitive semantic models. We review evidence from the brain-network

perspective, which shows that the semantic system is topologically segregated into

three brain modules. Revisiting previous region-based evidence in light of these new

network findings, we postulate that these three modules support multimodal experiential

representation, language-supported representation, and semantic control. A tri-network

neurocognitive model of semantic processing is proposed, which generates new

hypotheses regarding the network basis of different types of semantic processes.
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TOWARD A NETWORK PERSPECTIVE OF SEMANTIC
PROCESSING

Semantic memory contains general knowledge about the world, including objects, people, facts,
and beliefs, that is abstracted away from specific experiences (Yee et al., 2013) and is crucial to
a wide range of human cognitive functions including language, memory, object recognition and
use, and reasoning. Semantic knowledge can be obtained and stored in various ways. Consider the
concept of “Beijing.” Someone who has never been in or seen anything about Beijing can deduce
from linguistic contexts such as, “Beijing is the capital of China” that it is an important city that
belongs to China. One may also know about Beijing by actually being there and experiencing it.
These approaches of gaining knowledge about Beijing roughly correspond to two types of proposals
about how semantic memory is developed and organized: one is based on experiences of various
specific attributes, and the other is based on rich information supported by language, such as, word
associations, word orders, and syntactic structures.

For the brain basis of semantic processing, decades of neuroimaging studies have consistently
localized it to widely distributed brain regions across temporal, frontal, and parietal cortices (Binder
et al., 2009). The conventional approach used by these studies is to identify regions activated by
semantic tasks or lesion patterns associated with semantic deficits and to understand the function
of each region in isolation. The prevailing models are dominated by the experience/attribute-
based representation of semantics, interpreting the regions that loosely belong to the sensorimotor
cortices as representing semantic attributes of corresponding modalities (e.g., form, color, motion,
sound, action, and emotion; Martin, 2016). Language is often considered as a processing modality
in parallel to these modalities rather than as a system that makes special contributions to semantic
representation (Patterson et al., 2007; Lambon Ralph et al., 2016). Regions outside the modality-
specific cortices or with functions related to semantic processing across modalities are often
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assumed to bind multiple attribute/modality-specific
representations, e.g., the anterior temporal lobe (Patterson
et al., 2007; Lambon Ralph et al., 2016) or the high-level
convergence zones in the left temporal and inferior parietal
regions (Binder and Desai, 2011), or to implement control
processes that retrieve and manipulate semantic knowledge in a
task- and context-appropriate fashion, e.g., the left frontoparietal
and the left posterior temporal cortical areas (Jefferies, 2013;
Lambon Ralph et al., 2016) or only the frontal regions (Binder
and Desai, 2011). The functional assignments of specific roles to
these regions are controversial and vary across models (Patterson
et al., 2007; Binder and Desai, 2011; Jefferies, 2013; Lambon
Ralph et al., 2016; Martin, 2016).

One important type of empirical evidence that was missing
from the construction of a full neural model of semantic
processing is the overall wiring structure, i.e., how the widely
distributed semantic-related brain regions are topologically
connected to support this complex faculty. Empirical profiling
of the wiring pattern of the semantic system would not only
provide direct evidence for how such diverse and distributed
brain regions are communicated and incorporated but also pose
important constraint on the understanding of the functions of
individual regions, given that the functionality of a brain region
is tightly related to its functional/structural connectivity patterns
(Passingham et al., 2002). The importance of connectivity
patterns has also been highlighted by previous models (Lambon
Ralph et al., 2016; Martin, 2016), but only vague predictions
about the global connectivity pattern could be derived: the
modality/attribute-specific representations for a given concept
are directly linked (Martin, 2016) or merged into higher-order
representations in a graded manner (Lambon Ralph et al., 2016).
The empirical evidence of the global wiring structure was absent,
however, until recently.

The development of brain network analyses, advanced by the
growing availability of techniques to measure brain connectivity
and graph-theoretic approaches, offers a novel and global
perspective to depict the topological organization of brain
networks (Bullmore and Sporns, 2009; He and Evans, 2010;
Sporns, 2013). A set of recent studies began to investigate the
manner in which the widely distributed semantically relevant
brain regions are connected, providing compelling clues about
the organizational structure of the semantic system from a
network viewpoint. This review seeks to highlight the recent
empirical evidence about the network structure of the semantic
system and to consider previous region-based studies in this
new framework, leading to the proposal of a tri-network
neurocognitive model of semantic processing. We will finally
discuss how this network-based model generates new types of
research avenues to study the neural basis of semantic processing.

SEMANTIC FUNCTIONAL NETWORK:
MODULES AND HUBS

Brain Networks and Graph Theory
The global topological structure of a complex system can be
quantified using various graph-theoretic measurements. Under

this framework, the brain can be modeled as a network
incorporating nodes and edges. The nodes correspond to brain
regions that can be defined as regions of interest, e.g., building
spheres around peaks obtained through activation studies (Power
et al., 2011, 2013; Vandenberghe et al., 2013; Xu et al., 2016)
or according to anatomical landmarks (Salvador et al., 2005;
He et al., 2009; Fang et al., 2015). The edges correspond to
interregional connections that can be measured by multiple
non-invasive imaging techniques, such as, diffusion tensor
imaging tracking white matter tracts (Basser et al., 1994),
or the resting-state functional connectivity reflecting intrinsic
functional coupling (Biswal et al., 1995).

By applying graph theory, the topological properties of the
brain network can be measured quantitatively (Bullmore and
Sporns, 2009; He and Evans, 2010). Two important network
structures are modules and hubs (Figure 1). Modules refer to a
community of nodes with internal connections that are much
denser than those between communities. Various algorithms can
be used to detect a modular structure in a network (Fortunato,
2010; Sporns and Betzel, 2016), e.g., hierarchical clustering or
information-based theory. Hubs refer to nodes that have central
roles in network communication, commonly identified as nodes
with densest connections (van den Heuvel and Sporns, 2013).
The role of hubs can be also described in terms of their
connectivity arrangements in a modular structure (Guimera and
Amaral, 2005; He et al., 2009; Power et al., 2013); provincial hubs
have connections primarily to the nodes of their own module,
while connector hubs have relatively even connections to the
nodes of the modules they connect.

Modular and hub structure can provide important clues
about the functional segregation and integration among brain
regions (Sporns, 2013). Modularity analyses have revealed

FIGURE 1 | Illustrations of modules and hubs in a network. The modules with

dense intra-community connections are identified within the dashed circles.

The hubs are the nodes with high degrees (the number of connections that are

maintained by a node) that are reflected by the size of nodes. Provincial hubs

primarily connect nodes of their own module, while connector hubs are

important in bridging different modules.
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that the whole-brain intrinsic functional network can be
consistently partitioned into segregated modules that correspond
to dissociable cognitive components in the human mind, e.g.,
visual, somatomotor, default mode, dorsal/ventral attention, and
control (He et al., 2009; Power et al., 2011; Yeo et al., 2011).
Connector hubs linking different modules have been found to
be essential to the integration of multiple cognitive functions,
as damage to these regions was found to cause severe and
widespread cognitive deficits (Warren et al., 2014).

Brain Networks and the Semantic System
The global topological structure of the semantic system was
recently investigated. One study (Xu et al., 2016) constructed the
intrinsic functional semantic network, with nodes defined
as regions obtained from a careful and comprehensive
meta-analysis (Binder et al., 2009) and edges defined as the

inter-regional resting-state functional connectivity (Figure 2A,
left). The meta-analysis results that were used to define
nodes were based on 120 task-evoked neuroimaging studies
that contain 187 semantic contrasts with orthographic and
phonological processing demands and task difficulty matched
for. The graph-theoretic approach was applied on this network,
revealing three segregated modules (Figure 2A, middle),
which were highly stable across datasets and various network
construction methods (e.g., different nodal resolution—voxels
or regions). According to the anatomical layout, these three
modules were labeled as the left perisylvian network (PSN),
the default mode network (DMN), and the left frontoparietal
network (lFPN). Connector hubs that integrate different modules
were also identified, e.g., the ATL was found to be the connector
hub linking Modules DMN and PSN, while the posterior middle
temporal gyrus (pMTG) was identified as the connector hub

FIGURE 2 | Semantic functional network: modules, hubs, and their cognitive functions. (A) The organization of the intrinsic functional network of semantic processing.

Left: the semantic network showing nodes and edges, with nodes defined as the regions consistently activated during semantic processing obtained from a

meta-analysis (Binder et al., 2009), and edges defined as the resting-state functional connectivity strength; Middle: the modules of the semantic network obtained by

applying a graph-theoretic approach to the underlying connection patterns. Right: The connector hubs linking the three modules. Reproduced with permission from

Xu et al. (2016). (B) Example results from task-evoked fMRI studies that shed light on the functions of the three modules. Left: The conjunction areas of five semantic

aspects including shape, sound, motion, color, and manipulation from 900 words, which resemble the areas of Module DMN. Reprinted with permission from

Fernandino et al. (2016); Middle: High-level linguistic processing regions generated from the group-level language localizer from 220 participants, which resemble the

brain areas of Module PSN (https://evlab.mit.edu/funcloc/download-parcels); Right: The semantic control areas generated from a meta-analysis of 53 studies, which

resemble the areas of Module lFPN. Reproduced with permission from Noonan et al. (2013).
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linking Modules DMN and FPN (Figure 2A, right). A similar
approach was employed in a study (Fang et al., 2015) that
constructed the structural semantic network by correlating the
integrity of white matter tracts with the semantic performances
in patients with brain damage. Although it was acknowledged
that this constructed semantic structural network may not
be complete owing to restricted lesion distributions (lack of
posterior lesions), three modules were obtained in this study that
aligned with those found in the intrinsic functional network (Xu
et al., 2016): the “medial temporal lobe module” in the structural
network functionally coincided with the Module DMN; the
“orbital frontal–temporal/occipital module” overlapped with
the Module PSN; the “opercular/triangular/middle frontal–
subcortical module” corresponded to the Module FPN. Note
that there was only one study that investigated the semantic-
task effects on the connectivity patterns (Vandenberghe et al.,
2013). They first identified regions that were activated during
an associative semantic task (the Pyramids and Palm Trees
test). They then examined the functional connectivity pattern
among these regions during the semantic and visuoperceptual
control conditions. Six modules were detected, including one
anatomically corresponding to the classical perisylvian language
system, one to the visual perception system, and the other four
that were difficult to label. Given that the functional connectivity
was established based on both semantic and perceptual blocks,
it was difficult to conclude whether the network structures were
related to semantic or perceptual processing or both. Indeed, the
visual module might be due to the visual tasks being employed
and the observed perisylvian module converged onto the PSN
module within the semantic system identified during the resting
state (Xu et al., 2016).

Although there are only these few studies that directly
addressed the global topological structure of the semantic system,
clues about the semantic network structure could be gleaned
from several other lines of researches. First, several recent studies
focused on the connectivity pattern of specific semantically-
related regions as seeds, such as, the posterior and the middle
part of the MTG (Turken and Dronkers, 2011; Wei et al., 2012;
Davey et al., 2015, 2016; Feng et al., 2015), the ATL (Turken and
Dronkers, 2011; Binney et al., 2012; Pascual et al., 2013; Feng
et al., 2015; Jackson et al., 2016), the angular gyrus (Davey et al.,
2015), the orbital and triangular part of the inferior frontal gyrus
(IFG) (Saur et al., 2008; Turken and Dronkers, 2011; Feng et al.,
2015), and the fusiform gyrus (Saur et al., 2008). They found
that these regions have rich functional or structural connections
with each other, and provide fragmented yet illuminating views
about the overall patterns of the whole system, which converge
with the network-level findings above. For example, consistent
with the findings that the pMTG was the connector-hub between
Modules PSN and FPN, seed-based studies showed that the
pMTG has functional/structural connections with the brain areas
in Modules PSN and Module FPN like the lateral temporal
cortex, the IFG, the intraparietal sulcus (Turken and Dronkers,
2011; Wei et al., 2012; Davey et al., 2015, 2016; Feng et al.,
2015). Also the seed-based studies found that the lateral ATL was
functionally/structurally connected with the brain areas within
the Modules DMN and PSN, such as, the ventral and anterior

part of the IFG, the AG and the precuneus (Binney et al., 2012;
Pascual et al., 2013; Feng et al., 2015; Jackson et al., 2016),
consistent with the topological findings that the lateral ATL was
the connector-hub between Modules PSN and DMN. Second,
patient studies have focused on specific white-matter connections
and revealed that disruptions in several large white-matter tracts,
including the inferior fronto-occipital fasciculus, the anterior
thalamic radiation, and the uncinate fasciculus that connect left
temporal, frontal, parietal, and subcortical regions, are associated
with semantic deficits (Duffau et al., 2005; Agosta et al., 2010;
Acosta-Cabronero et al., 2011; Han et al., 2013). These results are
in line with the rich intrinsic functional connections illustrated
in Figure 2A (left). Finally, results about the whole-brain global
network structure also tend to be in accord with the results
focused only on semantic regions (He et al., 2009; Power et al.,
2011; Yeo et al., 2011).

Intriguingly, the tri-module network structure is not naturally
predicted or accounted for by any of the existing models
of semantic processing, as outlined above. This network
structure suggests the need to consider the functions of
the semantic-related regions in the framework of the three
modules—whether regions belonging to the same module have
homogenous functions and what those functions might be.
Notably, the existence of brain modular structure does not
directly imply cognitive dissociation or synthesis—this is the
classical reverse inference fallacy. Nonetheless, the cognitive
hypotheses of semantic processing provide natural clues for
interpreting the function of the brain network structure and
together help formulate comprehensive neurocognitive models
(Henson, 2005; Price and Friston, 2005; Poldrack, 2006). In the
following section, we will review task-evoked neuroimaging and
neuropsychological evidence about the functions of the brain
regions in these three modules (summarized in Table 1) and
postulate the functions of each module accordingly based on a
broad range of pathological and functional neuroimaging data
and existing meta-analyses results.

SEGREGATED BRAIN MODULES,
SEGREGATED SEMANTIC COMPONENTS

The DMN: The Multimodal Experiential
System
This module (red nodes in Figure 2A, middle) encompasses
bilateral retrosplenial gyri/precuneus, bilateral medial prefrontal
cortices, bilateral posterior angular gyrus (AG) extending to the
superior division of the lateral occipital cortex, the left superior
frontal gyrus (SFG), and the middle part of the left fusiform
cortex/parahippocampal gyrus. These are the core regions of the
DMN, originally defined as a brain system showing task-induced
deactivation (Raichle et al., 2001).

The striking resemblance between the DMN and the semantic
processing regions has long been noticed (Binder et al., 1999,
2009; Binder, 2012; Wei et al., 2012). Compared to the resting
state, the DMN is significantly less deactivated for semantic tasks
compared to perceptual or phonological tasks (Binder et al.,
1999, 2009; Seghier et al., 2010; Wirth et al., 2011; Humphreys
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et al., 2015). Why is semantic processing special? One view is
that the DMN does not process semantics and its activation
during semantic processing is only the epiphenomenon of lower
attention demand of semantic tasks relative to other tasks
(Humphreys et al., 2015). In line with this view, the DMN plays a
general intrinsic role, serving to maintain a functional balance
with brain systems engaged in attention and control (Raichle,
2015). The magnitude of the DMN deactivation in visual tasks is
related to the degree of task demand (Singh and Fawcett, 2008),
and functional spontaneous fluctuations of the DMN was anti-
correlated with the top-down attention network (Fox et al., 2005;
Chai et al., 2012). Given that the DMN activation in semantic
tasks was observed even when the task demand (defined by
reaction time) of semantic processing is matched to (Wirth et al.,
2011) or even stronger than (Seghier et al., 2010) the control tasks
or when the task demand was explicitly regressed out (Binder
et al., 2005), we suspect that the engagement of the DMN in
semantic processing is not only due to the effects of general
difficulty.

Another view is that DMN functionality is related to
semantics. It has been considered that the resting state is not a
blank state but rather involves “spontaneous cognitions,” such
as, remembering the past and thinking about the future, in
which the DMN is recruited (Andrews-Hanna et al., 2010). Meta-
analyses reveal that the DMN is the shared neural foundation
of a spectrum of cognitive tasks, e.g., autobiographical memory
retrieval, prospection, theory of mind, and navigation (Spreng
et al., 2009). Considering the common cognitive component
of these tasks, the DMN was considered as a memory-based
simulation system, serving to piece together materials from
one’s past experience to construct new scenes or context, which
can be self-projected into for evaluation, prospection, and
mentalizing (Buckner and Carroll, 2007; Hassabis and Maguire,
2007; Schacter et al., 2007; Buckner et al., 2008). It has been
discussed that semantic processing is a necessary component
underlying such processes (Binder et al., 1999, 2009; Binder and
Desai, 2011; Binder, 2012).

We wish to bring attention to another intriguing aspect
of the DMN: many of its constituent regions are where
information from multiple modalities converges. Using a “step-
wise functional connectivity” approach to trace information
pathways from unimodal regions to higher-order convergence
zones, areas in the DMN were found to be the final stable state
where information pathways from all modalities reach (Sepulcre
et al., 2012). Applying a “parametric modulation” method to
decompose the activation of a word into effects of multiple
modality-specific attributes, areas where all the attribute effects
overlapped largely fall in the DMN (Fernandino et al., 2016)
(Figure 2B, right). This evidence suggest that this system is
likely to support the integration of simulation-based multimodal
experiential representation. Using the earlier “Beijing” example,
we can use our experience to construct multimodal scenarios
about what “Beijing” entails, e.g., the views of the Forbidden City,
the taste or smell of a Beijing roast duck, or the rhotic vowels
of the Beijing dialect. As concepts acquired from rich personal
experience can be more automatically instantiated through this
approach, the DMN is more strongly activated by concrete

(Binder et al., 2005; Sabsevitz et al., 2005; Wang et al., 2010;
Hoffman et al., 2015), famous (Sugiura et al., 2006; Wang
et al., 2016), and personal (Sugiura et al., 2006; Renoult et al.,
2012) concepts, in contrast with abstract, common, and general
concepts, respectively. Patients with Alzheimer’s disease or mild
cognitive impairment in which the DMN is usually compromised
tended to recall past events divested of rich sensory-perceptual
imagery (Irish et al., 2011), and show deficits of knowledge of
famous people and their physical features (Borg et al., 2010).

However, the DMN is neither sufficient nor necessary for all
semantic tasks. Unlike damage to the PSN (see below), damage
to brain areas of the DMN in patients with Alzheimer’s disease
(Nestor et al., 2006) or in patients suffering a stroke with lesions
encompassing the posterior cingulate cortices (Leech and Sharp,
2014) or the parietooccipital cortex (Berryhill et al., 2007) seems
not to cause severe deficits in semantic tasks that mostly probe
association or function knowledge. We thus contend that the
DMN hosts the aspects of semantic knowledge that are tightly
related to multimodal experiences and is not necessary for those
tasks that do not require the retrieval of specific attributes based
on such experiences (e.g., associating “Beijing” with “China” does
not require retrieval of the specific location or landscape of
Beijing, and “fox” with “shrewdness” does not require retrieval
of what a fox’s ears look like).

The PSN: The Language-Supported
Semantic System
This module (green nodes in Figure 2A, middle) includes the
entire length of the left middle temporal gyrus, the ventral
part of the left IFG, and the junction area of the left posterior
temporal and inferior parietal lobes (the left temporoparietal
junction). A common characteristic of these regions is that they
together fit well with the language network (Figure 2B, middle)
(Friederici, 2011), which shows selective activation by sentences
in contrast to nonword lists and not by multiple non-linguistic
tasks, such as, arithmetic, working memory, cognitive control,
or music (Fedorenko et al., 2011). For semantic processing, the
left ventral IFG and the left temporal cortex in this module were
consistently found to be more strongly activated by abstract and
idiomatic concepts with meanings that presumably rely heavily
on linguistic associations (Hoffman, 2015) than by concrete
(Binder et al., 2005; Sabsevitz et al., 2005; Wang et al., 2010;
Hoffman et al., 2015) or literal (Lauro et al., 2008; Boulenger
et al., 2009) terms. Intriguingly, lesions or atrophies in regions
of this system affect semantic comprehension in not only verbal
but also nonverbal tasks using picture, sound or motion as
inputs, e.g., the anterior temporal cortex (Bozeat et al., 2000;
Mummery et al., 2000; Garrard and Carroll, 2006; Jefferies and
Lambon Ralph, 2006; Robson et al., 2012), the left posterior
temporal and temporoparietal cortices (Jefferies and Lambon
Ralph, 2006; Corbett et al., 2009; Robson et al., 2012; Thompson
et al., 2015). Transcranial magnetic stimulation (TMS) to the
left (ATL) (Pobric et al., 2007, 2010) and the left posterior
middle temporal gyrus (pMTG) (Hoffman et al., 2012) impedes
semantic performances in both verbal and nonverbal tasks
without affecting non-semantic tasks of comparable difficulty.
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What kind of function would be relevant for linguistic
processing and for semantic processing in both verbal and
nonverbal tasks? We postulate that this module supports
(amodal) semantic representation that is embedded in the
language system. Given the paucity of research on language-
related dimensions in the neural semantic space, the exact
nature, content, or format of representation that is supported
by the PSN remains unknown. The point here is that the
identification of a PSN module (segregated from the DMN)
in the semantic brain network suggests a natural candidate
system for a kind of representation distinct from experiential-
based representations. There has been much discussion in the
cognitive, psycholinguistic and artificial intelligence fields about
how linguistic contexts (e.g., word association, word order,
and syntactic structure) contribute to representing meaning
(Landauer and Dumais, 1997; Burgess, 1998; Jones andMewhort,
2007; Barsalou et al., 2008; Dove, 2009, 2010; Vigliocco et al.,
2009; Mikolov et al., 2013a, 2014), and relevant hypotheses
should be articulated for testing against neural responses in the
PSN. One simple possibility is that the occurrence patterns in
natural language differ from the objects and events associations
in the real-word scenes at least to some extent, and such
language-occurrences modulate the experience-based relations
among concepts and create new types of relations. That is, the
specific association patterns due to the linguistic contexts, among
lexical representations and/or semantic representation in the
DMN system, may give rise to information that is part of the
semantic representation. There are two important points to note.
First, while the symbolic accounts of semantic representation
may satisfy this description, the representational format in the
Module PSN is not necessarily amodal symbolic. Second, there is
a long debate about the necessity of having “lexicalized concepts”
being different from “prelinguistic concepts” (Caramazza, 1997;
Levelt et al., 1999; Vigliocco and Vinson, 2007). In the spirit
of parsimony, we do not think having a separate lexicalized
concepts here are necessary. The semantic information supported
by the language system could be coded in the association
patterns of lexical representations themselves, which points
to “prelinguistic” concepts (the experiential representations
in the Module DMN). Importantly, such language-supported
knowledge constitutes an integral aspect of semantics (consider
the knowledge given by “Beijing is the capital of China” for
“Beijing”), and disrupting this module would lead to impairment
for semantic tasks requiring this type of knowledge in not only
verbal but also nonverbal semantic tasks.

The lFPN: The Semantic Control System
This module (blue nodes in Figure 2A, middle), including the
dorsal part of the left IFG, the IPS, and a region in the
posterior inferior temporal lobe. It is largely similar to the left
hemisphere part of a broader bilateral frontoparietal control
system revealed by whole-brain intrinsic functional connectivity
analyses (Vincent et al., 2008; Power et al., 2011; Yeo et al., 2011).
The broader frontoparietal control network acts as a flexible
hub (Cole et al., 2013), offering rapid adaptive coordination of
other functional systems in a task- and time-appropriate fashion
(Dosenbach et al., 2008). While the right part of this network

is involved in sensorimotor-related control (Levy and Wagner,
2011; Harel et al., 2014), the left one is more engaged in the
conceptual and linguistic domains (Noonan et al., 2013; Harel
et al., 2014). Compared to the FPN that has been referred to
a multi-demand system that is activated during a wide variety
of demanding cognitive tasks (Duncan, 2010; Fedorenko et al.,
2013), the FPN that is most consistently associated with semantic
control is more left-lateralized with its frontal part being more
posterior and inferior.

The proposal that regions in this module serve a control
role in semantic cognition, i.e., semantic control, has been
discussed in depth in recent reviews (Jefferies, 2013; Lambon
Ralph et al., 2016). We will not reiterate all the relevant empirical
evidence here but will refer to a few lines of representative
evidence (Table 1). Meta-analyses show that brain areas in the
lFPN are more strongly activated by semantic tasks requiring
greater semantic control (Noonan et al., 2013) (Figure 2B, right).
Attribute semantic tasks, which require attention on memory
images of specific attributes (e.g., color, shape, manipulation),
induce stronger activation in this module, in contrast to semantic
tasks, which do not (Badre et al., 2005; Davey et al., 2016). Lesions
extending to the lFPN lead to so-called “semantic access deficits”
(Mirman and Britt, 2014), with sensitivity to the semantic
distance and the strength of competitors in semantic association
tasks (Noonan et al., 2010), refractory effects (Jefferies et al., 2007;
Thompson et al., 2015), and item or task inconsistency across
different semantic tasks (Jefferies and Lambon Ralph, 2006;
Corbett et al., 2009; Robson et al., 2012). TMS to the triangular
part of the left IFG selectively disrupts semantic tasks with higher
executive demands without affecting those with low demand or
non-semantic tasks and to the left IPS disrupts performance in
attribute semantic tasks (Whitney et al., 2011, 2012; Krieger-
Redwood and Jefferies, 2014). In the context of the three-
module structure, this system “controls” the semantic content
represented in the other two modules—retrieving the specific
experiential attributes in the DMN and the language-based
knowledge in the PSN—according to current task demands.
Regions in this system are more strongly activated by semantic
tasks than by other tasks that presumably also need control
(Binder et al., 2009), either because semantic processing requires
stronger/more complex controls or because these regions are
more strongly connected with other semantic representation
components and are more visible in semantic tasks.

INTEGRATED HUBS, INTEGRATED
SEMANTIC COMPONENTS

The three modules must be integrated for a given semantic task.
When we hear the word “Beijing” or see a picture of Beijing
in various linguistic or real-world contexts, multiple aspects of
semantic knowledge and the control systems are activated to
achieve understanding. How are these three modules integrated?
The network analysis identified a series of connector hub regions
that are important in linking the three modules discussed above
(Figure 2A, right) (Xu et al., 2016): the left ATL linking Modules
PSN and DMN, the left pMTG linking Modules PSN and lFPN,
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the left posterior intraparietal sulcus (pIPS) linking Modules
DMN and lFPN, and the left AG and the border areas of the
superior and middle frontal gyri (left SFG/MFG) linking all
three brain systems. Note that these regions were also discussed
above in the three modules; all regions are assigned to a module,
even regions with relatively evenly distributed connections with
multiple modules (i.e., connector hubs). These regions, especially
the ATL (Patterson et al., 2007; Lambon Ralph et al., 2016),
the pMTG (Wei et al., 2012; Davey et al., 2016), and the AG
(Schwartz et al., 2011; Bonner et al., 2013; Seghier, 2013; Price
et al., 2015), have been considered to be the “hub” regions of the
semantic system, motivated by various types of evidence about
their importance in semantic processing. Based on the literature,
multiple types of semantic functions, including the hypothesized
ones of the corresponding networks they link, have been reported
in these regions (Table 1).

The connectivity-based findings reviewed here provide direct
empirical evidence for their (connector-) “hub” status, the
definition of which is based on the connectivity patterns
(Guimera and Amaral, 2005; van den Heuvel and Sporns, 2013),
and revealed that they differ in terms of the systems they
connect. For instance, the ATL is where multimodal experiential
representation and language-supported representation meet,
whereas the pIPS and the pMTG are where the control
system interacts with the experiential and language-supported
representations, respectively. These findings that derived from
the topological patterns of these hub regions are in accordance
with some previous notions about these regions that was inferred
from regional activation patterns, e.g., that the ATL is the
“transmodal” site between experiential and language-supported
representations (Rogers et al., 2004; Patterson et al., 2007; Visser
et al., 2010; Lambon Ralph, 2014; Rice et al., 2015), the IPS is
associated with top-down attention to memory images (Cabeza
et al., 2008), and the pMTG is the area for “controlled semantic
retrieval” (Badre et al., 2005; Schwartz et al., 2011; Davey et al.,
2015).

Notably, while the connectivity profiles suggest that they are
likely to be the sites where different components of semantic
processing are integrated, there are at least two possibilities about
whether and how they actually merge. One is that they simply
host adjacent yet different sub-regions belonging to different
networks and with distinct functionalities. Another possibility is
that they perform a similar function to different inputs within
different tasks or some type of higher-order computations that
merge the functions of multiple modules. In light of the network
structure, studies on the nature of representation and processing
supported by these regions should take into consideration the
functions of the multiple networks they merge.

A TRI-NETWORK NEUROCOGNITIVE
MODEL OF SEMANTIC PROCESSING

Our review of recent brain network studies on semantic
processing and consideration of previous region-based results
in light of these new findings lead to the proposal of a tri-
network neurocognitive model of human semantic processing

(Figure 3): the widely distributed semantic regions are wired
into three separate neural networks, which are likely to support
three different cognitive components of semantic processing.
The DMN serves as the multimodal experiential system,
where experience-based knowledge across multiple modalities is
integrated (e.g., the integration of various types of experiences
one has with Beijing). The left PSN serves as the non-experiential
system, where semantic content being supported by linguistic
contexts are represented (e.g., “Beijing is the capital of China”).
The lFPN serves as the semantic control system, acting on the
other two modules for the retrieval of semantic knowledge in a
task- and time-appropriate fashion. Semantic processing entails
the coordination of these functional modules, which is likely to
be achieved via a series of connector hubs in the ATL, the pMTG,
the pIPS, the AG, and the SFG/MFG.

This tri-network model is mainly motivated by the modular
and hub structure of the widely distributed semantic network and
shares several key points with previous semantic neurocognitive
models. The role of the ATL in binding various modalities
(verbal and non-verbal) converges with the “hub and spoke”
model as well as its recent update—the controlled semantic
cognition model (Patterson et al., 2007; Lambon Ralph et al.,
2016). The relevance of this distributed system in representing
abstraction of modality-specific attributes/experiences is shared
by the embodied-abstraction model (Binder and Desai, 2011).
The distinction between representation and control is also well in
line with these recent models (Binder and Desai, 2011; Jefferies,
2013; Lambon Ralph et al., 2016).

However, there are several important differences. Within
representation, our current framework entails two segregated
systems: multimodal experiential content in the DMN and
language-supported content in the PSN. Both are “abstracted”
away from modality-specific “embodiment,” but the degree
of abstraction and the principle of abstraction are likely to
differ between these two systems—one originated from real-
world experience and one from language. In the DMN, the
sensory, motor, and affective inputs from multiple modality-
specific systems converge together to capture high-order
conceptual representations (e.g., taxonomic categories or a

FIGURE 3 | The schematic presentation of the tri-network neurocognitive

model of semantic processing. lFPN, left frontoparietal network; DMN, default

mode network; PSN, perisylvian network; pMTG, posterior middle temporal

gyrus; ATL, anterior temporal lobe; pIPS, posterior intraparietal sulcus; AG,

angular gyrus; SFG/MFG, superior and middle frontal gyrus.
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whole event), which best fill the role of the “crossmodal
conjunctive representation” proposed by Binder (2016). In the
PSN, the meaning is supported by language contexts. The
previous neuroanatomical semantic models have not articulated
such potential differences between language-supported and
experience-based semantic representations. In some models,
only modality/property-specific representations were considered
(Martin, 2016). In the hub-and-spoke/controlled semantic
cognition model, language is just one modality of processing
in parallel to other modalities (e.g., vision, sound, and valence)
(Patterson et al., 2007; Lambon Ralph et al., 2016). In the
embodied-abstraction model, abstraction happens from the
modality-specific representations (Binder et al., 2009; Binder
and Desai, 2011). Our framework incorporates evidence both
from the network structure and regional studies using lesion
and neuro-activation approaches, highlights the two distinct
brain systems for two different types of semantic representation,
which is more similar to the dual coding cognitive models
of meaning (Paivio, 1986; Barsalou et al., 2008; Mahon and
Caramazza, 2008; Dove, 2009, 2010; Vigliocco et al., 2009; Zwaan,
2014; Reilly et al., 2016), and provides specific dissociable target
brain systems as the corresponding neural bases. A series of
hub regions are also explicitly postulated to integrate the two
kinds of semantic representation and to interact with the control
system.

FUTURE PERSPECTIVES

This tri-network model frames several lines of new questions
about the brain basis of semantics. The central point is that
from any of the various approaches, instead of studying the
functionality and mechanisms of widely distributed cortical
regions implicated in semantic processing individually, it
would be more productive to study them in the contexts
of the three sub-systems, examining both the modules as
whole units and the roles of specific constituents (regions
and connections). A few examples are outlined here. First,
regarding different kinds of semantic processing, it remains to
be understood how the connectivity pattern across different
modules is configured according to different types of semantic
tasks (e.g., with different semantic contents and difficulty levels).
Would the configuration of connectivity patterns complement
the findings of cortical representations? Specifically, would
the connectivity within a particular module be specifically
strengthened when the task involved more of the corresponding
semantic contents (e.g., the Module PSN in a task that
requires to process abstract concepts)? Would the connectivity
between the Module FPN and the other two modules be
strengthened when the task was more difficult? Second, about the

different types of semantic content and encoding mechanisms
(experiential vs. those supported by linguistic contexts), the
DMN and the PSN modules in the semantic system provide
the candidate target brain systems to test their distinctions
and interactions. Cognitive models built from experience-
based attributes and those from various natural language
processing models, e.g., the Latent Semantic Analysis (Landauer
and Dumais, 1997) or the neural network models such as,
word2vec (Mikolov et al., 2013a, 2014), could be compared
against neural activity patterns in these two neural modules.
Will activity pattern and/or connectivity pattern across the
DMN and the PSN modules correlate relatively more strongly
with the semantic space generated according to experiential
and the linguistic contextual models, respectively? Third,
from a developmental perspective, it would be intriguing
to see during semantic knowledge acquisition whether the
neural representational patterns of different sub-systems are
modulated by corresponding types of experience (linguistic vs.
experimental). Finally, new questions emerge about the nature of
computation at the connector-hub regions, i.e., how information
across multiple modules is integrated. Do the hub regions
simply host sub-regions with distinct functionalities (exhibiting
distinct neural representational pattern) or do they perform some
type of higher-order computation that merges the functions of
multiple modules (exhibiting high-order neural representational
patterns)?
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