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Abstract
Spatial working memory (SWM) is an important component of working memory and plays an essential role in driving high-
level cognitive abilities. Recent studies have demonstrated that individual SWM is associated with global brain
communication. However, whether specific network nodal connectivity, such as brain hub connectivity, is involved in
individual SWM performances remains largely unknown. Here, we collected resting-state fMRI (R-fMRI) data from a large
group of 130 young healthy participants and evaluated their SWM performances. A voxel-wise whole-brain network analysis
approach was employed to study the relationship between the nodal functional connectivity strength (FCS) and the SWM
behavioral scores and to further estimate the participation of brain hubs in individual SWM. We showed significant
associations between nodal FCS and SWM performance primarily in the default mode, visual, dorsal attention, and fronto-
parietal systems. Moreover, over 41% of these nodal regions were identified as brain network hubs, and these hubs’ FCS
values contributed to 57% of the variance of the individual SWM performances that all SWM-related regions could explain.
Collectively, our findings highlight the cognitive significance of the brain network hubs in SWM, which furthers our
understanding of how intrinsic brain network architectures underlie individual differences in SWM processing.
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Introduction
As an important component of working memory, spatial working
memory (SWM) is involved in the temporary maintenance, updat-
ing and integration of visuospatial information and is indispens-
able for the accurate localization and tracking of external stimuli
during the performance of cognitive tasks (Baddeley and Hitch
1974; Baddeley 2002). A wide spectrum of individual differences in
the SWM capacity has been well documented (Cornoldi and
Vecchi 2003), and individual variability in SWM ability is closely
related to general cognitive aptitudes, such as intelligence (Fry
and Hale 1996). With the development of non-invasive neuroima-
ging technologies over the last 20 years, the brain mechanisms
associated with SWM have gained increasing attention. Task-
based functional neuroimaging studies consistently indicate that

regional activations (e.g., lateral prefrontal and parietal cortices)
and deactivations (e.g., medial prefrontal and parietal cortices)
are associated with the SWM capacity (Courtney et al. 1998;
D’Esposito et al. 1998; Schweinsburg et al. 2005; Curtis 2006;
Vuontela et al. 2009), suggesting that widely distributed brain
regions underlie individual SWM processing.

In the past two decades, advancements in resting-state func-
tional magnetic resonance imaging (R-fMRI) (Biswal et al. 1995)
have offered unique opportunities to explore non-invasively the
spontaneous functional activities or the intrinsic functional
architectures underlying human cognitive behaviors in the
absence of goal-directed tasks. Spontaneous functional activities
that occur during the resting-state have been proven to reflect
underlying neuronal activities (Shmuel and Leopold 2008;
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Wang et al. 2012). Specifically, the synchronization of spontan-
eous functional activities among brain regions, which is also
termed intrinsic functional connectivity, underlies variabilities in
cognitive performance, such as conceptual processing (Wei et al.
2012), face processing (Zhu et al. 2011), and N-back working
memory (Hampson et al. 2006). Recently, functional connectomic
analysis using R-fMRI and graph-theory provides a more com-
prehensive perspective for quantitatively describing the topo-
logical configuration of intrinsic functional brain networks
(Bullmore and Sporns 2009; He and Evans 2010; Bullmore and
Bassett 2011). Using these novel approaches, several studies
have suggested that SWM capacity is supported by the global
topology of the brain network (Stevens et al. 2012; Alavash et al.
2015; Magnuson et al. 2015). For example, individual SWM per-
formance is facilitated by the high global efficiency and modular-
ity of the whole-brain network (Stevens et al. 2012; Alavash et al.
2015). Magnuson et al. (2015) found that individual SWM per-
formance was related to the mean strength of the functional
connectivity within a specific functional system that involved
the lateral prefrontal and parietal cortices. These studies high-
lighted that individual SWM processing requires global commu-
nication and functional integration in the brain networks.

It is worthy noting that connectomic studies have demon-
strated that human brain networks include a set of highly con-
nected regions called brain hubs, which are primarily involved
in the medial and lateral prefrontal and parietal regions
(Buckner et al. 2009; Tomasi and Volkow 2010; Zuo et al. 2012;
Liao et al. 2013). These brain hubs play critical roles in global
communication and are characterized by high rates of cerebral
blood flow and glucose metabolism (Liang et al. 2013; Tomasi
et al. 2013; van den Heuvel and Sporns 2013). Spatially, these
hub regions largely overlap with regions that show regional
activation/deactivation in SWM-related processing, as men-
tioned above. This, raises the possibility that brain hubs might
significantly contribute to the high communication require-
ments of individual SWM processing. However, it remains
largely unknown whether and how the intrinsic network con-
nectivity in specific brain regions, especially the brain hubs,
underlies individual variability in SWM performance.

To address this issue, we collected R-fMRI data and visuo-
spatial working memory task performances from a large group
of 130 young healthy participants. Using a voxel-wise whole-
brain connectivity analysis approach, we comprehensively
explored the potential contribution of the network nodal con-
nectivity capacity to individual variability in SWM. Such a voxel-
wise approach avoids parcellation-dependent influences on the
topological architecture of brain networks (Smith et al. 2011; de
Reus and van den Heuvel 2013). Given that the medial and lateral
prefrontal and parietal cortices exhibit distributed regional acti-
vations and deactivations during SWM tasks (Curtis 2006;
Vuontela et al. 2009) and primarily belong to network hubs dur-
ing rest (Buckner et al. 2009; Liang et al. 2013; van den Heuvel
and Sporns 2013), we hypothesized that 1) intrinsic functional
connectivity patterns in these regions would be significantly
related to the SWM processing capacity of participants and 2)
functional network hubs would play an important role in indi-
vidual variations in SWM performance.

Materials and Methods
Participants

In this study, we used a dataset that included 146 healthy col-
lege students from the Connectivity-based Brain Imaging

Research Database (C-BIRD) collected at the Beijing Normal
University. All of the participants were right-handed and had
no history of neurological or psychiatric disorders. Written
informed consent was obtained from each participant, and this
study was approved by the Institutional Review Board of the
State Key Laboratory of Cognitive Neuroscience and Learning at
the Beijing Normal University. The data from 16 subjects were
excluded for the following reasons: 1) 1 was a non-native
Chinese language speaker; 2) 11 did not complete the SWM
task; 3) 3 had significant head motion (above 2 mm or 2° in any
direction, see “Image preprocessing”) and 4) 1 was an extreme
outlier based on the SWM task scores (above 3 standard devia-
tions, SDs). The data from the remaining 130 participants (67
females; age: 22.8 ± 2.3 years old, range: 19–31 years old; educa-
tion: 16.1 ± 1.8 years, range: 11–23 years) were used for further
analyses.

Image Acquisition

Data acquisition was performed using a Siemens Trio Tim 3.0 T
scanner (Siemens Medical Systems, Erlangen, Germany) with a
12-channel phased-array head coil in the Imaging Center for
Brain Research at the Beijing Normal University. The participants
were instructed to rest and relax with their eyes closed and to
refrain from falling asleep during the scan. The R-fMRI data were
obtained using an echo-planar imaging sequence with following
parameters: repetition time (TR)/echo time (TE) = 2000ms/30ms;
flip angle (FA) = 90°; field of view (FOV) = 200 × 200mm2;
matrix = 64 × 64; slices = 33; thickness = 3.5mm; voxel
size = 3.1 × 3.1 × 3.5mm3; gap = 0.7mm and 200 volumes. The
T1-weighted data were acquired using sagittal 3D magnetization
prepared rapid gradient echo sequences. The sequence para-
meters were as follows: TR/TE = 2530ms/3.39ms; FA = 7°;
FOV = 256 × 256mm2; matrix = 256 × 192; number of slices = 144;
thickness = 1.3 mm and voxel size = 1 × 1.3 × 1.3mm3.

Behavioral Tests

Each participant performed an SWM task and a verbal working
memory (VWM) task (Fig. 1) (Jonides et al. 1993; Smith et al.
1996). The SWM task was used to assess the visuospatial work-
ing memory processing ability of each participant. The VWM
task was used as a control task to assess VWM processing abil-
ity, which provides an opportunity to reveal the relative

Figure 1. The flow charts of SWM and VWM tasks. The experimental procedures

can be found in the methods section.
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specificity of the findings for SWM. Visual stimuli were pre-
sented, and the responses were collected using E-Prime
(Psychology Software Tools) in both tasks. These SWM and
VWM tasks were conducted after the R-fMRI scans, and the par-
ticipants were not told about the collection of behavioral data
until the imaging scans were finished. Given that previous
studies have suggested that prior experiences of task perform-
ance significantly affect subsequent R-fMRI data collection
(Tung et al. 2013; Sami et al. 2014), our procedure ensured that
the participants could not specifically think of the behavioral
tasks during the scan to avoid data contamination. Several
other behavioral tasks were also administered for specific
research purposes and were not analyzed here.

SWM Task
We adopted the SWM task paradigm designed by Jonides et al.
(1993). Briefly, the SWM task included 80 trials. Considering the
potential individual variations in peripheral motor and percep-
tual processing, two conditions (a memory condition and a con-
trol condition) were included in this task. In the memory
condition, in each trial, 3 dots were presented for 200ms at
various locations on a screen. After the 3 dots disappeared, a
probe circle was presented for 1500ms, during which the parti-
cipants were required to press the corresponding buttons to
judge whether the probe marked the location of any of the pre-
vious dots. The procedure of the control condition was the
same as the memory condition except that the 3 dots and the
probe circle appeared simultaneously, and after which, the par-
ticipants were asked to judge whether the probe encircled a dot
or not. Before the formal behavioral experiments, each partici-
pant performed 20 practice trials.

VWM Task
The VWM task (Smith et al. 1996) was very similar to the SWM
task in the experimental structure, including the memory and
control conditions. Briefly, four uppercase letters appeared on
the screen simultaneously for 200ms during the memory con-
dition. After the letters disappeared, a lowercase letter was
shown as a probe for 1500ms, and the participants responded
by pressing a button to indicate whether the probe had the
same name as any of the letters that were shown prior to it.

Notably, different experimental materials (dots or letters) in
these two tasks were used to assess different working memory
processing. In this study paradigm, the SWM task, with the
dots as the experimental stimuli, focuses on the spatial pos-
ition information processing; whereas, the VWM task, with let-
ter stimuli, reflects verbal information processing.

Data Analysis

Behavioral Data Analysis
To correct for any individual speed-accuracy trade-off effects,
we calculated the inverse efficiency (IE) score (Townsend and
Ashby 1983) as a behavioral measure of both the memory and
control conditions in each task. The IE score was calculated by
dividing the average response time of the correct trials by the
accuracy across all trials. Subsequently, we reversed the sign of
the scores so that higher IE scores represented more efficient
performances.

To assess the SWM performance for each participant, we
calculated an SWM score for each participant by regressing the
contribution of the IE score of the control condition from the IE
score of the memory condition using a regression analysis.
This procedure excluded potential individual variations in

peripheral primary motor and perceptual processing.
Subsequently, the SWM scores for each participant were con-
verted to a z-score for normalization. Specifically, we scaled
each participant’s score by subtracting the average score across
the participants and then dividing it by the SD of the SWM
scores. Similarly, for each participant, we computed the nor-
malized VWM score using the same procedure as the SWM
score computation.

Image Preprocessing
All of the preprocessing was performed using the Statistical
Parametric Mapping software (SPM8; www.fil.ion.ucl.ac.uk/
spm) and the Data Processing Assistant for Resting-State fMRI
(DPARSF) (Chao-Gan and Yu-Feng 2010). Briefly, the first 5
volumes of the functional images were discarded for magnetic
field stabilization and the participants’ adaptation to the scan-
ning environment. The subsequent preprocessing steps
included slice time correction and head motion correction.
Three subjects were excluded from the subsequent analyses
due to significant head motion (above 2mm or 2° in any direc-
tions). Next, the corrected functional images were normalized
to the Montreal Neurological Institute (MNI) space by using a
T1 image unified segmentation and were resampled to 3 mm
isotropic voxels, followed by spatial smoothing with a 4mm
full-width at half-maximum Gaussian kernel. After the linear
trends were removed, a temporal band-pass filter (0.01–0.1 Hz)
was applied to reduce the low-frequency drift and high-
frequency physiological noise. Finally, 6 head motion para-
meters and 3 other confounding signals (white matter, cerebro-
spinal fluid and global signals) were regressed from the time
course of each voxel. The resultant residuals were used for the
functional connectivity analyses.

Voxel-Wise Network Nodal Connectivity Measurements
To assess network connectivity, for each participant, we first
computed the Pearson’s correlations between the time series of
all pairs of voxels within a gray matter mask with 45 892 voxels
(gray matter probability values higher than 0.2 in the SPM gray
matter template) to yield a whole-brain functional connectivity
matrix. To improve the normality of the correlations, we trans-
formed the individual correlation matrices to z-score matrices
by using a Fisher’s r-to-z transformation. Then, a threshold
(here, r = 0.2, the threshold effects were evaluated in the
“Validation Analysis”) was chosen to eliminate the weak corre-
lations attributable to signal noise. Finally, for each voxel, we
calculated its functional connectivity strength (FCS) as the sum
of the weight (z-values) of the connections between a given
voxel and all of the other voxels. Notably, the FCS metric,
which is referred to as the “degree centrality” of the weighted
networks in terms of graph-theory, captures the global commu-
nication ability of brain regions in the whole networks (Buckner
et al. 2009; Zuo et al. 2012; Liao et al. 2013) and reflects the rate
of cerebral blood flow and metabolic levels (Liang et al. 2013;
Tomasi et al. 2013). Considering the ambiguous interpretation
of negative correlations with the removal of the global signal
(Murphy et al. 2009), we conservatively restricted our analysis
to positive correlations.

Correlation Between Behavior and Network Nodal Connectivity
To determine whether network nodal connectivity is signifi-
cantly related to individual SWM performances, we performed
a voxel-wise correlation analysis between the participants’
SWM scores and FCS values. A Monte Carlo simulation was
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employed to correct for multiple comparisons using the AFNI
software package (Version AFNI_2011_12_21_1014, compiled
on 12 August 2015) (Cox 1996). The statistical significance level
was set to P < 0.05 with a cluster size > 208 voxels (5616mm3)
corresponding to a corrected P < 0.05. Two additional statis-
tical thresholds (2 initial voxel thresholds, namely P < 0.01
and P < 0.001) and a non-parametric permutation test were
also used to validate the corrections for multiple comparisons
(for details, see Validation Analysis). To further ascertain how
these SWM-related regions are anatomically distributed in the
brain systems, we calculated the percentage of the significant
voxels located in the 8 functional systems, including the
default mode, visual, dorsal attention, fronto-parietal, ventral
attention, cingulo-opercular, salience, and sensorimotor sys-
tems. The parcellation of these functional systems was
extracted from a prior brain template (Power et al. 2011).
Moreover, to investigate with what regions these SWM-related
regions were functionally connected, we considered a 5mm
sphere at each peak of the SWM-related cluster as a seed and
performed a seed-based whole-brain functional connectivity
analysis. Then, one-sample t-tests were used to determine
significant functional connectivity with each peak across par-
ticipants, and a Monte Carlo simulation was again employed
to correct for multiple comparisons for each connectivity
analysis.

Involvement of Brain Hubs in SWM
Previous studies have suggested that network hubs play
important roles in global brain communication (Achard et al.
2006; Buckner et al. 2009; He et al. 2009). Considering that
SWM processing involves global information integration in
the whole brain (Alavash et al. 2015), we examined whether
the regions showing significant correlations between FCS and
SWM occupied central positions in the brain networks. Of the
case, 2 strategies were used. 1) For each participant, we first
computed the mean FCS within the SWM-related regions and
the mean FCS of the other regions. Then, paired-sample
t-tests were performed to determine whether the SWM
regions had higher FCS values than all of the other regions in
the brain. 2) To further explore the involvement of brain hubs
in the individual SWM performances, we first obtained a
group-level FCS map by averaging the individual FCS maps
and then defined the brain network hubs by identifying voxels
with higher FCS values (2 thresholds were used here: above
1 SD of the mean, which indicates a relatively stringent hub
threshold, and above the mean, which indicates a relatively
conservative hub threshold). For a given nodal voxel, higher
FCS values indicate denser overall connections with other
nodal voxels, which represent better functional communica-
tion or information integration over the brain (Buckner et al.
2009; Cao et al. 2014). Then, we computed the hub proportion,
Phub, namely, the proportion of SWM-related regions belonging
to the brain hubs as

= × ( )·P
N

N
100%, 1hub

SWM hub

SWM

where NSWM·hub is the number of common voxels between
the SWM-related regions and the brain hubs, and NSWM is
the number of voxels within the SWM-related regions.
Finally, non-parametric permutation tests were performed
to examine whether this hub proportion was significantly
higher than random. Briefly, an empirical distribution of the

hub proportion was obtained by allocating random positions
for the same number of voxels of the SWM-related regions
and re-computing the Phub of the randomized regions (10 000
permutations). The 95th percentile points of the empirical
distribution were used as critical values in a one-tailed test
of whether the observed hub proportion could occur by
chance.

Within the SWM-related regions, we further investigated
the contribution of brain hubs in explaining individual SWM
performance. A 5-step procedure was undertaken as follows.
First, we explored the total contributions of the SWM-related
regions in explaining the variability of SWM performance. A
linear regression analysis (model A) was performed, with the
SWM score as the dependent variable and the averaged FCS
value within all regions that showed significant SWM-FCS cor-
relations as the independent variable. Second, we further
explored the contributions of the overlapping hub regions
(i.e., the voxels showing significant SWM-FCS correlations and
simultaneously being identified as whole-brain hubs) in
explaining the individual SWM performances. The linear
regression analysis (model B) was performed with the SWM
score as the dependent variable and the averaged FCS value
within the overlapping hub areas as the independent variable.
Third, we explored the contribution of the SWM-related
regions and the overlapping hub regions in explaining the
variability of SWM performance. A linear regression analysis
(model C) was performed again, with the SWM score as the
dependent variable and the averaged FCS values within all
SWM-related regions and within the overlapping hub areas as
the independent variables. Fourth, we compared the variance,
R2, of the model C with that of model A, resulting in a unique
variance indicating that the overlapping hubs, but not the
SWM-related regions, explained the variations in SWM. We
further computed the shared variance (i.e., both the overlap-
ping hub regions and all SWM-related regions could explain
individual SWM performance) by subtracting the unique vari-
ance (model C vs. model A) from the variance that the hubs
could explain (model B). Finally, the contribution ratio of hubs
within the SWM-related regions was determined by dividing
the total variance of all SWM regions (model A) by the shared
variance.

Assessing the Relative Specificity of the Observed SWM Regions
To test whether the contribution of the network nodal connect-
ivity of the obtained regions was relatively specific for SWM
processing or general processing, we performed the following 2
analyses. First, we performed a voxel-wise correlation analysis
between the VWM scores and the FCS values. The results were
corrected for multiple comparisons, as described according to
the previous procedure for SWM. Finally, we compared the
results of the SWM and VWM analyses by counting the number
of overlapping voxels between them. Second, we compared the
SWM-FCS correlation coefficients to the VWM-FCS correlation
coefficients by calculating a statistic z-value (Dunn and Clark
1969; Alavash et al. 2015) in a voxel-wise manner. Briefly, for a
given voxel, the z-value was calculated as
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where N is the number of samples, rSWM,FCS is the SWM-FCS
correlation coefficient, rVWM,FCS is the VWM-FCS correlation
coefficient, and
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where rSWM,VWM is the correlation coefficient between SWM and
VWM scores.

In this study, we further evaluated the potential effects of
differences in the measurement errors of SWM and VWM
tasks while comparing the 2 correlations (Alavash et al.
2015). To do this, we first estimated the reliability of the
SWM task using Cronbach’s coefficient alpha (Cronbach
1951). Then, for each voxel, we obtained the corrected SWM-
FCS correlation coefficient by dividing the original correl-
ation coefficient by the square root of the reliability. The
same procedure was also used to obtain the corrected VWM-
FCS correlation coefficients. Finally, the statistic z-value was
re-calculated to determine the significance of the differences
between the SWM-FCS and VWM-FCS correlations using
formula (2).

Validation Analysis

Data Analysis Strategies
To validate our major results, we examined the influence of
the different image preprocessing and data analysis strat-
egies. First, to assess the effects of demographic factors on
our main results, we performed a general linear model ana-
lysis to examine the relationship between the FCS value and
SWM score with age, gender, and years of education as covari-
ates. Second, given that the spatial smoothing in the prepro-
cessing steps might introduce artificial local correlations
between voxels that were unrelated to their functional con-
nections, we validated our major results without smoothing
in our data preprocessing. Third, previous studies have sug-
gested that global signals are associated with non-neuronal
activity, such as respiration, and should therefore be removed
(Fransson 2005; Birn et al. 2006; Fox et al. 2009). However, this
processing introduces widespread negative functional con-
nectivity and may alter the intrinsic correlation structure of
brain networks (Murphy et al. 2009; Weissenbacher et al.
2009). Thus, we repeated our network analysis without global

signal regression. Fourth, given that very local correlations
may arise from aspects of data processing and head motion
artifacts (Power et al. 2012), we excluded these very local cor-
relations (<20mm) during the FCS calculation procedure and
re-performed the statistical analysis. Fifth, to determine
whether our major results were dependent on the choices of
correlation thresholds for connectivity, we recomputed the
FCS maps using different correlation thresholds (i.e., 0.1, 0.3,
0.4, and 0.5) and then re-performed the statistical analysis.
Finally, we further validated the effects of head motion on the
estimation of functional connectivity by performing a “scrub-
bing” procedure (Power et al. 2012) on the preprocessed
images. For the volumes with a frame-wise displacement
exceeding a threshold of 0.5mm, we replaced the volumes
and their adjacent volumes (2 forward and 1 backward
frames) with the nearest neighbor interpolated data within
each subject’s fMRI time series. We then re-identified the
SWM-related regions using the scrubbed R-fMRI data.

Statistical Analysis Strategies
Several studies have suggested that different statistical ana-
lysis strategies could affect the fMRI results of multiple com-
parison corrections (Woo et al. 2014; Eklund et al. 2016). Thus,
we evaluated the effects of different statistical analysis strat-
egies on our main conclusions in 3 ways. First, we examined
the effects of different initial voxel-level significance thresh-
olds on our main results by using 2 other initial voxel-level
thresholds (i.e., P < 0.01 and P < 0.001). Second, Eklund et al.
(2016) suggested that the non-parametric permutation test
could produce nominal results for both voxel-wise and cluster-
wise inferences. Thus, we performed Spearman rank correl-
ation to assess the relationship between SWM scores and FCS
and further employed a non-parametric permutation test to
determine the cluster-wise significance. Briefly, for each per-
mutation, we first randomized individual SWM scores, re-
performed the brain-behavior associations and recorded the
maximal significant cluster size. With 10 000 permutations, an
empirical distribution of the significant cluster size was
obtained, and the 95th percentile points of the empirical distri-
bution were used as critical values to determine whether the
observed significant clusters occurred by chance. Finally, to
validate the robustness of our main results, we performed a
split-half reproducibility analysis by randomly dividing all par-
ticipants into 2 independent subgroups matched for gender,
age, years of education, and SWM scores (Table S1). Then, we
repeated the voxel-wise SWM-FCS correlation analyses in each
respective subgroup.

Table 1 Participants’ performance on behavioral tasks

Task Response time (ms) Accuracy (%) Inverse efficiency
Mean ± SD (range) Mean ± SD (range) Mean ± SD (range)

SWM task (N = 130)
Memory condition 761 ± 122 (443–1080) 82 ± 8 (0.60–0.98) −942 ± 211 (−1728 to −522)
Control condition 583 ± 86 (411–902) 98 ± 2 (0.90–1) −594 ± 92 (−945 to −411)
SWM score 0.87 ± 148 (−440 to 355)
VWM task (N = 129)a

Memory condition 811 ± 103 (583–1058) 84 ± 10 (0.48–1) −987 ± 198 (−1794 to −614)
Control condition 947 ± 109 (643–1207) 91 ± 6 (0.75–1) −1050 ± 152 (−1470 to −713)
VWM score −0.25 ± 190 (−1353 to 386)

aOne participant was excluded as an extreme outlier on the VWM test scores (>3 SDs above the mean value). N, number of subject.
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Results
SWM Correlated with the Network Nodal Connectivity

Table 1 shows the mean value and SD of the performance of all
participants on the behavioral tasks, including the response
times, accuracies, IE values and task scores. The distribution of
the SWM scores followed a normal distribution (Kolmogorov–
Smirnov test, P = 0.20) (Fig. 2A). The voxel-wise correlation ana-
lysis revealed significant positive correlations between the
SWM scores and the FCS values, primarily in the bilateral pos-
terior cingulate cortex/precuneus (PCC/PCU), the bilateral med-
ial prefrontal cortex (MPFC), the left superior frontal gyrus
(SFG), the bilateral inferior parietal lobules/intraparietal sulcus
(IPL/IPS) and the medial occipital cortex (Fig. 2B,C and Table 2).
These results indicate that higher nodal functional integration
in regions corresponds to better individual SWM performance.
Moreover, using a predefined functional modular template
(Power et al. 2011), we showed that these SWM-related regions
were predominantly distributed in the default mode (38%), vis-
ual (22%), dorsal attention (8%) and fronto-parietal (7%) systems
(Fig. 2B). Finally, the seed-based whole-brain functional con-
nectivity analyses (Fig. 3) provided further support for the find-
ings in these brain systems.

Involvement of the Functional Network Hubs in SWM

To examine whether the regions showing significant SWM-FCS
correlations occupied a central position in the global network
integration, we compared the mean FCS between the SWM-
related regions and the other regions and calculated the hub
proportion of the SWM-related regions. First, we found that
regions with significant SWM-FCS associations exhibited a
higher FCS value than other regions (t(df=129) = 21.35, P
= 3.70 × 10-44) (Fig. 4A), suggesting that these SWM-related
regions play more important roles in global brain communica-
tion. Second, we identified highly centralized hubs of the brain
functional networks using a stringent FCS threshold (i.e., above
1 SD of the mean FCS) and found that they were predominantly
located in the PCC/PCU, the MPFC, the lateral frontal and the
parietal cortices (Fig. 4B). This spatial distribution of the brain
hubs was largely compatible with previous findings (Buckner
et al. 2009; Liang et al. 2013; Liao et al. 2013). Further analysis
confirmed that, among the regions with significant SWM-FCS
correlations, 41% (i.e., Phub) belonged to the hub areas of the
whole-brain networks (red color, Fig. 4C), and this proportion
was significantly higher than that at a random level (permuta-
tion test, P < 0.0001). Notably, while using a conservative
threshold (above the mean FCS) to define the brain hubs, we

Figure 2. Distribution of individual SWM scores and the relationship between the nodal FCS and SWM scores. (A) The distribution of the SWM scores obeyed a normal

distribution (Kolmogorov–Smirnov test, P = 0.20). (B) Left: Regions showing significant correlations between the FCS value and SWM performance. The significance

threshold was set to the corrected P < 0.05 (single voxel P < 0.05, cluster size > 208 voxels). The r values were mapped on the cortical surface using BrainNet Viewer

(Xia et al. 2013). Right: The system-dependent distribution of the significant regions. These significant regions are preferentially located in the default mode (38%), vis-

ual (22%), dorsal attention (8%) and fronto-parietal (7%) systems. (C) Scatter plots show positive correlations between the participants’ SWM performances and the

FCS of the cluster peak in the PCC/PCU, the MPFC/SFG, and the bilateral IPL/IPS. Here, the SWM and FCS values were converted to z-scores by subtracting the average

value across the participants and dividing by the SD of the values. Each dot represents the data from one participant. DMN, default mode network; VN, visual net-

work; DAN, dorsal attention network; FPN, fronto-parietal network; CON, cingulo-opercular network; SM, sensorimotor network; SN, salience network; VAN, ventral

attention network.

Table 2 Regions showing significant correlation between FCS and SWM performance

Brain regions BA Peak MNI coordinates T Peak (r) Voxels number

x y z IE RT ACC

PCC/PCU 7,31 18 −51 15 4.65 0.38*** −0.27** 0.34*** 1053
MPFC/SFG 8,9 3 42 36 4.01 0.33*** −0.10 0.16† 535
Right IPL/IPS 40,2 42 −45 54 4.90 0.40*** −0.17† 0.16† 426
Left IPL/IPS 40,2 −45 −39 54 4.57 0.37*** −0.24** 0.14 370

BA, Brodmann area; RT, response time; ACC, accuracy. *P < 0.05; **P < 0.01; ***P < 0.001; †0.05 < P < 0.1.
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found that 89% (i.e., Phub) of the SWM-related regions were
located at the hubs regions of the whole-brain networks, and
this proportion was significantly higher than that at a random
level (permutation test, P < 0.0001). Collectively, these results
indicate that the regions with significant SWM-FCS correlations
tend to have more crucial topological roles in global brain net-
work integration.

Within the SWM-related regions, we further explored the
contribution of brain hubs in explaining the individual SWM per-
formance. When the averaged FCS value of SWM-related regions
was entered into the regression as an independent variable, the
model explained 21% of the variation in the participants’ SWM
processing efficiencies (model A: R2 = 0.21; F(1,128) = 34.66, P
= 3.25 × 10−8) (Fig. 4D). When the averaged FCS value of the
regions that overlapped the hubs (above 1 SD of the mean) was
entered into the regression, the model explained 14% of the indi-
vidual variation (model B: R2 = 0.14; F(1,128) = 21.91, P
= 7.19 × 10−6) (Fig. 4D). When the averaged FCS value of the over-
lapping hubs (above 1 SD of the mean) and the averaged FCS
value of all SWM-related regions were both entered in to the
regression, the model explained 23% of the individual variation
(model C: R2 = 0.23; F(2,127) = 20.63, P = 1.74 × 10−8). Thus, the
unique variance that the overlapping hub regions could explain
the variation of individual SWM performance was 0.02 (model C
vs. model A: R2: 0.23−0.21), while the shared variance of both the
overlapping hub regions and all SWM-related regions was 0.12
(model B vs. (model C vs. model A): R2: 0.14−0.02). Together, we
found that the hub regions accounted for 57% (0.12/0.21) of the
variation of the original interpretation model A (Table 3).
Notably, while using the conservative threshold to define the
hubs (above the mean), the model explained 20% of the individ-
ual variation (R2 = 0.20; F(1,128) = 32.41, P = 8.11 × 10−8), account-
ing for 81% of the original interpretation model (Table 3).
Collectively, the FCS of the overlapping hub areas largely
explained the variation that all of the SWM-related regions could
explain in the variability of SWM processing, thus highlighting
the important role of the hubs in SWM.

Functional Specificity of the Observed SWM-Related
Regions

There was a low correlation between the behavioral scores of
the SWM and VWM (r = 0.18, P = 0.04). Using a voxel-wise cor-
relation analysis, we found that the FCS of the right hippocam-
pus extending to the fusiform gyrus was negatively correlated
with the VWM (Fig. S1A), which was largely different from the
SWM-FCS correlation pattern. For the VWM-related regions
(i.e., the right hippocampus and the fusiform gyrus), the seed-
based functional connectivity pattern rarely overlapped with
those of the SWM-related regions (Fig. S2). Notably, this result
was also obtained by only using the IE score of the memory
condition in the VWM task without considering the control
condition (Fig. S1B).

Using the Dunn and Clark’s statistic z-value, we compared
the correlations between FCS and 2 working memory scores
(rSWM-FCS – rVWM-FCS). Significantly stronger SWM-FCS correla-
tions were found in the PCC/PCU, the MPFC/SFG and the IPL/IPS
(Fig. S1C). This pattern was found even after controlling the
reliabilities in the 2 tasks (Fig. S1D; The Cronbach’s alpha of the
SWM task was 0.67 and 0.72 for the VWM task). Together, these
findings indicated the relative specificity of the contributions of
the network nodal connectivity within most of these regions
for SWM processing.

Reproducibility of the Main Results

We evaluated the reproducibility of our main findings under dif-
ferent image preprocessing procedures and data and statistical
analysis strategies. The results remained consistent under these
different strategies, as indicated by the high frequency of the
spatial overlap of the SWM-related regions among validations,
especially in the brain hubs such as the bilateral PCC/PCU, the
bilateral MPFC, the left SFG, and the bilateral IPL/IPS (Fig. 5). See
Fig. S3 for details of the validation results. Moreover, we per-
formed a split-half analysis and found that the FCS in the med-
ial and lateral parietal cortex was positively correlated with
individual SWM performance in both subgroups (Fig. S4), sug-
gesting the robust reproducibility of our main findings.

Discussion
In this study, we found that the FCS in the medial and lateral
prefrontal and parietal regions was significantly correlated with
individual SWM performances but was not correlated with the
performance of the non-SWM task (i.e., VWM). These regions
are predominantly located in the default mode, visual, dorsal
attention and fronto-parietal systems. More importantly, these
regions exhibited a high FCS and occupied a large hub propor-
tion, they explaining 21% of the variation in the participants’
SWM processing performances, of which the hub regions occu-
pied 57% of this contribution. These findings indicated an
intrinsic functional network organization underlying the indi-
vidual differences in the SWM performances, and the brain
hubs served as indispensable part of the organization.

Functional Systems Underlying Individual Differences
in SWM Processing

Default Mode System
Notably, we found that most (38%) of the SWM-related regions
were predominantly located in the default mode network
(DMN), which has been demonstrated to exhibit deactivation
during an SWM task (Vuontela et al. 2009). Anticevic et al. (2010)

Figure 3. Seed-based functional connectivity maps of the SWM-related regions.

The cyan dots in the brain maps indicate the seeds (i.e., the peaks of SWM-

related regions) in the functional connectivity analysis. (A) The PCC/PCU (18 −51
15) and (B) the MPFC/SFG (3 42 36) exhibited significant functional connectivity

mainly with the DMN; (C) the right IPL/IPS (42 −45 54) and (D) the left IPL/IPS (−45
−39 54) were functionally connected to the dorsal attention and the fronto-

parietal networks. The significance level for these functional connectivity maps

was set at P < 0.001 with cluster sizes > 51–59 voxels (varied for different maps),

corresponding to a P < 0.001 corrected by Monte Carlo simulation.
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found that during a working memory task, deactivation in the
DMN regions predicts individual working memory perform-
ance. Such deactivation likely means that the DMN reduces its
activities during working memory tasks to ensure that limited
attentional resources are directed towards task-relevant infor-
mation and, thus, influences individual working memory pro-
cessing. Moreover, the functional connectivity between the

core DMN regions (e.g., PCC/PCU and MPFC) was correlated with
individual working memory performance during tasks and at
rest (Hampson et al. 2006; Esposito et al. 2009). In line with
these previous studies, by analyzing the relationship between
the individual differences in SWM performances and network
nodal connectivity capability of the whole brain, our observa-
tions of the contribution of the FCS in the DMN to individual
SWM performances further reinforce the notion that the func-
tion of the DMN not only involves internal mentation, such as
self-referential processing, the theory of mind and future think-
ing (Buckner et al. 2008; Spreng et al. 2009), but also indirectly
supports the performance of external-oriented processing,
such as SWM (Liang et al. 2016).

Visual System
The visual system is one of the most important part involved
visuospatial information integration in individual SWM pro-
cessing. For instance, activation of the visual system was
observed during perceptual processing in SWM (Courtney et al.
1997), and disrupted functional connectivity in the visual sys-
tem has been observed in schizophrenia, associated with poor
performance under a high-load SWM task conditions (Kang
et al. 2011). Our results are in agreement with these previous
findings showing that the resting FCS in the regions of the vis-
ual system are correlated with individual SWM performances.

Figure 4. Functional hubs in the brain networks and their relationship with SWM. (A) The bar map shows that the mean FCS value within the regions showing signifi-

cant FCS-SWM correlations was higher than the mean FCS value within other regions. The error bar represents the SD. ***P < 0.001. (B) The group-level mean FCS map

was obtained by averaging the FCS maps across individuals. The hub areas (above 1 SD beyond the mean) are delineated with black lines. (C) The overlapping map

between the regions contributing to individual differences in the SWM and the network hubs. The yellow patches indicate the hub areas, and the cyan patches indi-

cate the SWM-related regions. The overlapping regions (41%, Phub) are presented as red patches. (D) Scatter plots showing positive correlations between the partici-

pants’ SWM performances and the mean FCS within all SWM-related regions (top) and the hubs overlapping with the SWM-related regions (bottom).

Table 3 Prediction of individual SWM performance by mean FCS

Regions Phub F df R2 P

All SWM-related regions 34.66 1,128 0.21 3.25 × 10−8

All SWM-related
regions + Overlapping hub
regions (>1 SD + mean)

20.38 2,127 0.23 2.10 × 10−8

Overlapping hub regions
(>1 SD + mean)

41% 21.91 1,128 0.14 7.19 × 10−6

All SWM-related
regions + Overlapping hub
regions (>mean)

20.63 2,127 0.23 1.74 × 10−8

Overlapping hub regions
(>mean)

89% 32.41 1,128 0.20 8.11 × 10−8

Phub, the proportion of SWM-related regions belonging to the brain hubs.
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Moreover, previous studies have demonstrated that the fMRI
signals of the visual cortex retain high fluctuations during the
retention interval even when the visual stimulation disap-
peared during the SWM task (Munneke et al. 2010) and that the
activity pattern in the visual cortex during the retention inter-
val can successfully predict the orientation of the stimuli
(Pratte and Tong 2014). Together with our findings, we suggest
that the visual system not only participates in primary visual
processing but is also involved in higher-level integrated pro-
cessing, such as SWM.

Dorsal Attention and Fronto-Parietal Systems
The dorsal attention and fronto-parietal systems are tradition-
ally considered as crucial components associated with SWM, as
characterized by their consistent activation during various
types of SWM tasks (Belger et al. 1998; Courtney et al. 1998;
D’Esposito et al. 1998; Nystrom et al. 2000; Curtis 2006). Notably,
brain regions in the dorsal attention and fronto-parietal sys-
tems may perform different processes in SWM processing. For
example, information processing and motor planning involve
the prefrontal cortex, while sensory information coding and
storage are more prominent in the posterior parietal cortex
(Curtis 2006; Eriksson et al. 2015). In line with this proposition,
our experimental paradigm of SWM in this study mainly
reflects spatial information coding and storage, and thus the
functional connectivity in the posterior parietal cortex showed
the most robust correlation with SWM (Fig. 5). Not only the
local activations but also the functional connectivities repre-
senting interactions in the dorsal attention and fronto-parietal
systems are involved in individual SWM performances.
Recently, Bray et al. (2015) found that the functional connectiv-
ity within the fronto-parietal system during an SWM manipula-
tion task increased according to the task demand. Magnuson
et al. (2015) also found that the functional connectivity within
the fronto-parietal system during the resting-state is associated
with individual SWM performances. These studies, along with
our findings, provide consistent evidence that the functional
connectivity of the dorsal attention and fronto-parietal systems
is crucial for individual SWM processing.

Involvement of the Hubs in the Variations in SWM
Processing

The FCS, calculated by summing the connectivity strength of a
given voxel with all the other voxels, might reflect the possible
communicational resource of the region, capturing the global
communication abilities of the whole networks (Buckner et al.
2009; Cole et al. 2012). Thus, brain regions with high FCS during
the resting-state might imply their remarkable capacity for
information transfer during the task state. These regions are
identified as “hubs” in brain networks, which occupy a central
position in the communication and integration of the brain net-
work to support its diverse functional roles across a broad range
of cognitive tasks (Cole et al. 2013; van den Heuvel and Sporns
2013). Our results showed that the SWM-related regions tended
to have higher FCS values in the brain and had large areas of
overlap with hub, and that the hubs explained most of the vari-
ation in explaining the SWM capacity. The involvement of a hub
might facilitate two aspects of information communication and
integration required by the SWM. First, the SWM requires the
integration of massive amounts of information between the dis-
tributed regions across the brain in its intra-processes during
task performance. Second, as the “workbench of cognition”
(Klatzky 1975), the SWM requires heavy communication and
integration with other high-level cognitive functions to support
the performance of complex real-world activities involving a
large amount of visuospatial information processing (Kyllonen
and Christal 1990; Engle et al. 1999; Trick et al. 2012; Ashkenazi
et al. 2013). Notably, the hubs occupied a central position in the
communication and integration of the brain network, and thus,
the involvement of hubs in SWM is optimal to satisfy the large
integration requirement for SWM processing, supporting the
information communication and integration required for both
the intra-processes of SWM and cooperation with other high-
level cognitive processes. A recent study showed that the
densely connected regions reorganize the network architecture
by increasing the regional flexibility and FCS to adapt the task
demands during a working memory task (Vatansever et al.
2015). Such phenomena might suggest that the modulation of
hub regions enhances the capability of processing a large quan-
tity of information during a working memory task.

Interestingly, we observed different functional connectivity
patterns between individual SWM and VWM processing, sug-
gesting the relative functional specificity of network connectiv-
ity in two working memory tasks. These findings are supported
by several previous studies. Specifically, an intriguing study by
Alavash and colleagues (2015) showed that the VWM is primar-
ily involved in verbal or number processing and is facilitated by
local information integration. In contrast, SWM is primarily
associated with the visuospatial processing, which requires the
involvement of multiple regions and pathways to support the
diversity of visuospatial functions (Kravitz et al. 2011).
Moreover, Alavash et al. (2015) reported that visuospatial work-
ing memory was associated with high global network efficiency
and modularity, suggesting that individual SWM processing
requires global communication and functional integration of
brain networks. It should be emphasized that we observed that
SWM is involved in highly connected brain network hubs.
Given that the network hubs play vital roles in global brain
communication (Buckner et al. 2009; Liang et al. 2013), our find-
ings provide further evidence of the global network integration
architecture underlying individual SWM performance.

In this work, we showed the divergent mechanisms under-
lying SWM and VWM in the global integration of brain

Figure 5. Conjunction map of the validation results. The brain map shows the

frequencies of the spatial overlap of the SWM-related regions identified by nine

different image preprocessing and data analysis strategies (including regressing

out the demographic factors, performing smoothing during preprocessing,

retaining the global signal, removing local connections, using four different

connectivity thresholds and scrubbing for head motion), and three statistical

analysis strategies (including two different initial voxel-level significance

thresholds and a non-parametric permutation test). The regions with higher

frequencies indicate higher stability in the validation analysis. N, the number

of occurrences in the validations.
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networks. However, it is worthy to note that both the SWM and
the VWM belong to working memory and could have common
neural mechanisms to a certain degree. Based on previous
studies (Kravitz et al. 2011; Alavash et al. 2015), we speculate
that the common mechanisms between SWM and VWM could
be involved in local brain activity. To explore this possibility,
for each subject we calculated the amplitude of low-frequency
fluctuations (ALFFs, a metric that reflects local brain activity)
(Zang et al. 2007) in a voxel-wise manner and separately per-
formed the ALFF-SWM and ALFF-VWM correlation analyses.
We observed that both SWM and VWM showed significant cor-
relations with ALFF in the superior parietal cortex (Fig. 6A and
B). The region is usually considered as a critical region for gen-
eral working memory processing and showed consistent activa-
tion during both SWM and VWM tasks (Wager and Smith 2003;
Walter et al. 2003). Thus, these results suggest that, although
the SWM and VWM exhibit divergent mechanisms in global
integration at the network level, they share similar brain
mechanisms at the local activity level. Future works should be
conducted to systematically ascertain the convergence and
divergence of the brain network substrates underlying individ-
ual SWM and VWM processing.

Methodological Considerations

Several methodological issues need to be further addressed.
First, recent studies have demonstrated that several con-
founding factors might influence the results of functional
connectivity analyses, particularly head motion (Power et al.
2012; Van Dijk et al. 2012) and removal of global signal
(Scholvinck et al. 2010; Chai et al. 2012). Thus, we cautiously
assessed these confounding effects and found that our main
findings remained robust. Specifically, for head motion, we
did not find a correlation between the averaged root mean
square of head movement and SWM performance. However,
we did not exclude the possibility that residual head motion
signals might affect our results. Second, this study investi-
gated the relationship between the intrinsic network connect-
ivity strength in the functional brain network and the SWM
scores. Recent studies have documented a close relationship

between structural and functional networks (Honey et al.
2009; Wang et al. 2015). Thus, the structural foundation
underlying the intrinsic functional network organization of
individual SWM performances should be explored in a com-
bined analysis of multimodal imaging data. Third, we focused
our exploration on a group of young adults. Studying the
SWM-related network in a cohort of children to adolescents is
of great interest, which would allow us to delineate the devel-
opmental trajectory of the intrinsic functional connectivity
organization underlying cognitive behaviors and to further
expand the understanding of the formation of human cogni-
tive functions. Finally, researches show that patients with
mental illnesses, including schizophrenia, major depressive
disorder and chronic alcoholism exhibit impaired perform-
ance in SWM tasks (Park and Holzman 1992; Sullivan et al.
1993; Murphy et al. 2003). The association between the intrin-
sic functional network organization and individual SWM per-
formances is certainly worth exploring in disease states,
which might provide potential predictive neuroimaging indi-
cators for clinical applications and deepen our understanding
the cognitive impairments in diseases.

Conclusions
We demonstrated that the network nodal connectivity in the
default mode, visual, dorsal attention, and fronto-parietal sys-
tems is highly associated with individual variations in SWM
performance, and the brain hubs in these areas accounted for
the majority of the contributions. These findings have multifa-
ceted theoretical implications: 1) an intrinsic functional net-
work organization underlies the individual differences in SWM,
implying the importance of intrinsic network connectivity in
the variance of SWM performances, and 2) brain hubs are
involved in individual SWM performances, highlighting the sig-
nificance of network hubs in cognitive function.
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Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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