目標和宗旨
彭玉佳研究員領導的抑郁與焦慮障礙計算神經實驗室(Depression & Anxiety Computational Neuroscience Lab,DACN)主要聚焦于臨床心理學的基礎研究,并結合認知神經和人工智能的交叉研究,致力于探究抑郁和焦慮障礙的心理與神經機制以及治療方法。
歡迎加入
- Ph.D.博士同學:我們是一個高度學科交叉的實驗室,涉及臨床心理學、計算精神病學、認知神經科學、人工智能等多學科研究內容,歡迎不同背景的同學加入我們。
- MAP碩士同學:我們不要求任何技術基礎,我們將結合個人興趣和實驗室項目,找到屬于你的心理健康或臨床研究視角。
- RA:我們長期招募科研助理,以本科生科研、暑期科研等形式,參與實驗室的課題,相信你可以獲得你所需的科研鍛煉并收獲成果。
研究方法
- 問卷量表和訪談,線上調查和實驗
- 行為學手段,包括心理物理學,眼動技術
- 腦成像,包括腦電,核磁共振成像,腦磁圖和近紅外成像
- 計算建模,機器學習
研究內容
- 計算精神病學及社交焦慮的先驗偏差。通過計算模型和數(shù)據挖掘,來建模臨床病人的認知特點,比較病人與常人的認知行為差異,理解精神疾病背后的機制,預期實現(xiàn)基于多維度數(shù)據的診斷和分類,以及發(fā)病的早期預測。社交恐懼癥處于多種疾病交叉的中心,具有復雜的認知、情緒和行為的個體差異。然而,對于社交恐懼的理解還存在很多未知,并忽視了同樣重要的且包含大量社會信息的身體運動和社交運動。實驗室結合心理物理學、眼動捕捉、腦成像以及生理信號記錄,從縱向的時間維度和橫向的多數(shù)據維度,研究社交恐懼病人對于運動中社會信息的加工特異性。
- 社交媒體對于心理健康的影響。社交媒體的廣泛使用對心理健康的影響備受關注。研究表明,過度使用社交媒體可能導致焦慮、抑郁和孤獨感,尤其是青少年群體。負面效應常源于社交比較、網絡欺凌和睡眠干擾。然而,社交媒體也能提供社會支持、增強人際聯(lián)系,對心理健康有積極影響。個體差異、使用動機和內容類型是關鍵調節(jié)因素。實驗室采用橫斷面和縱向追蹤設計,探討社交媒體使用與心理健康的關系。橫斷面調查將測量被試的社交媒體使用頻率、內容偏好及心理健康指標;縱向追蹤通過多次數(shù)據收集,分析使用模式的變化對心理健康的影響。
- 抑郁與焦慮障礙的認知神經機制。當前科學界對于抑郁癥和焦慮癥的發(fā)展機制還存在很多未知,難以實現(xiàn)精神疾病的早期診斷和預測。社交恐懼癥是焦慮癥中一個重要的分支,體現(xiàn)為對于社交行為和場合的極度焦慮和回避,嚴重影響了病人的正常工作和生活,且為病人就醫(yī)和尋求治療帶來了極大的阻礙,從而形成一個惡性循環(huán)。從青春期至成年的過渡時期,該人生階段伴隨著前所未有的挑戰(zhàn)、生活壓力及人際關系,同時處于情緒和焦慮障礙發(fā)病的高峰時期。實驗室主要關注大腦活動和情緒障礙癥狀維度隨時間變化的關系。注重時間維度上的縱向追蹤,探究從青春期至成年期的發(fā)病誘因和神經發(fā)展機制,以及環(huán)境和家庭因素對于情緒、認知和神經網絡的調節(jié)。
- 精神疾病的創(chuàng)新治療方法。實驗室采用計算建模、數(shù)據挖掘和解碼神經反饋等前沿技術,深入探索精神疾病的發(fā)病機制。通過構建臨床病人的認知計算模型,系統(tǒng)比較其與健康人群在認知行為、神經活動等多維度的差異,揭示精神疾病的核心特征。在此基礎上,我們開發(fā)基于多模態(tài)數(shù)據的智能診斷和分類系統(tǒng),以實現(xiàn)更精準的早期預測。進一步,結合解碼神經反饋等創(chuàng)新神經調控技術,實現(xiàn)對異常神經活動的靶向干預,為精神疾病提供個性化、非藥物的治療新途徑。該研究有望推動精神疾病診療的智能化發(fā)展。
公眾號
科研隊伍
負責人
彭玉佳 ([email protected])
博士生
王愉茜 ([email protected])
德吉央拉([email protected])
賈仁和([email protected])
傅雨秋([email protected])
科研助理
程真嚳([email protected])
碩士生
麥燁婧,肖嘉茵,段海容,單婷,楊煦
Alumni
博士后:鞠芊芊
碩士生:江欣、彭旱雨、李自立、李婉心
代表性論文
Ju, Q., Chen, Z., Xu, Z., Fan, J., Zhang, H., Peng, Y. (2025). Screening Social Anxiety with the Social Artificial Intelligence Picture System. Journal of Anxiety Disorders, 109, 102955.
Liu, F., Wang, P., Hu, J., Shen, S., Wang, H., Shi, C., Peng, Y., & Zhou, A. (2025). A psychologically interpretable artificial intelligence framework for the screening of loneliness, depression, and anxiety. Applied Psychology: Health and Well‐Being, 17(1), e12639.
彭玉佳, 王愉茜, 鞠芊芊, 劉峰, 徐佳. (2025). 貝葉斯框架下社交焦慮的社會認知特性. 心理科學進展, 33(8), 1267-1274.
Liu, F., Ju, Q. Zheng, Q., Peng, Y. (2024). AI in Mental Health: Innovations brought by AI Techniques in Stress Detection and Interventions of Building Resilience. Current Opinion in Behavioral Sciences, 60, 101452. https://doi.org/10.1016/j.cobeha.2024.101452
Peng, Y., Gong, X., Lu, H., & Fang, F. (2024). Human Visual Pathways for Action Recognition versus Deep Convolutional Neural Networks: Representation Correspondence in Late but Not Early Layers. Journal of Cognitive Neuroscience, 36(11), 2458-2480. https://doi.org/10.1162/jocn_a_02233
Cushing, C. A. , Peng, Y., Anderson, Z., Young, K. S., Bookheimer, S. Y., Zinbarg, R. E., Nusslock, R., & Craske, M. G. (2024). Broadening the scope: Multiple functional connectivity networks underlying threat conditioning and extinction. Imaging Neuroscience. 2: 1–15. https://doi.org/10.1162/imag_a_00213
王愉茜, 臧寅垠, & 彭玉佳. (2024). 成人社交焦慮問卷中文版的效度和信度評價. 中國心理衛(wèi)生雜志, 38(08), 730–736. DOI: 10.3969/j.issn.1000-6729.2024.08.015
Peng, Y., Burling J., Todorova G., Pollick F., & Lu, H. (2024). Patterns of Saliency and Semantic Features Distinguish Gaze of Expert and Novice Viewers of Surveillance Footage. Psychonomic Bulletin & Review. 31, 1745-1758. https://doi.org/10.3758/s13423-024-02454-y
Xu, J., Wang, Y., Peng, Y. (2024) Psychodynamic Profiles of Major Depressive Disorder and Generalized Anxiety Disorder in China. Frontiers in Psychiatry. 15:1312980. doi: 10.3389/fpsyt.2024.1312980
Peng, Y., Han J., Zhang Z., Fan L., Liu T., Qi S., Feng X., Ma Y., Wang Y., Zhu. S.C.,(2024)The Tong Test: Evaluating Artificial General Intelligence Through Dynamic Embodied Physical and Social Interactions. Engineering.34(3), 12-22. https://doi.org/10.1016/j.eng.2023.07.006
彭玉佳, 王愉茜, 路迪. (2023). 基于生物運動的社交焦慮者情緒加工與社會意圖理解負向偏差機制.心理科學進展,31(6),905-914. https://doi.org/10.3724/SP.J.1042.2023.00905
Peng, Y. , Knotts, J. D. , Young, K. S., Bookheimer, S. Y., Nusslock, R., Zinbarg, R. E., ... & Craske, M. G. (2023). Threat neurocircuitry predicts the development of anxiety and depression symptoms in a longitudinal study. Biological psychiatry: cognitive neuroscience and neuroimaging. 8(1): 102-110. https://doi.org/10.1016/j.bpsc.2021.12.013
Peng, Y., Knotts, J.D., Taylor, C.T., Craske, M.G., Stein, M.B., Bookheimer, S., Young, K.S., Simmons, A.N., Yeh, H., Ruiz, J., Paulus, P.M. (2021). Failure to identify robust latent variables of positive or negative valence processing across units of analysis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 6(5), 518-526.
Shu, T., Peng, Y., Zhu, S., & Lu, H. (2021). A unified psychological space for human perception of physical and social events. Cognitive Psychology. 128. 101398.
Peng, Y. , Lu, H., & Johnson, S. P. (2021). Infant perception of causal motion produced by humans and inanimate objects. Infant Behavior and Development, 64, 101615.
Peng, Y. , Lee, H., Shu, T., & Lu, H. (2020). Exploring biological motion perception in two-stream convolutional neural networks. Vision Research, 178, 28-40.
Chiang J.N. , Peng, Y., Lu, H., Holyoak, K.J., & Monti, M.M. (2020). Distributed code for semantic relations predicts neural activity during analogical reasoning. Journal of Cognitive Neuroscience, 1-13.
Peng, Y. , Ichien, N., & Lu, H. (2020). Causal actions enhance perception of continuous body movements. Cognition, 194, 104060,
Ogren, M., Kaplan, B., Peng, Y., Johnson, K. L., & Johnson, S. P. (2019). Motion or emotion: Infants discriminate emotional biological motion based on low-level visual information. Infant Behavior and Development, 57, 101324.
Tsang, T., Ogren, M., Peng, Y., Nguyen, B., Johnson, K.L. & Johnson S.P. (2018). Infant perception of sex differences in biological motion displays. Journal of Experimental Child Psychology, 173, 338–350.
Keane, B. P., Peng, Y., Demmin, D., Silverstein, S. M., & Lu, L. (2018). Intact perception of coherent motion, dynamic rigid form, and biological motion in chronic schizophrenia. Psychiatry Research, 268, 53-59.
Shu, T., Peng, Y., Fan, L., Zhu, S., & Lu, H. (2017). Perception of human interaction based on motion trajectories: from aerial videos to decontextualized animations. Topics in Cognitive Science, 10(1), 225-241.
Peng, Y. , Thurman, S., & Lu, H. (2017). Causal action: A fundamental constraint on perception and inference about body movements. Psychological Science, 28(6), 798-807.
van Boxtel, J. , Peng, Y., Su, J., & Lu, H. (2016). Individual differences in high-level biological motion tasks correlate with autistic traits. Vision Research, 141, 136-144.
Chen, J., Yu, Q., Zhu, Z., Peng, Y., & Fang, F. (2016). Spatial summation revealed in the earliest visual evoked component C1 and the effect of attention on its linearity. Journal of Neurophysiology, 115(1), 500-509.
Chen, J., He, Y., Zhu, Z., Zhou, T., Peng, Y., Zhang, X., & Fang, F. (2014). Attention-dependent early cortical suppression contributes to crowding. The Journal of Neuroscience, 34(32), 10465-10474.
Lu, J. , & Peng, Y. (2014). Brain-computer interface for cyberpsychology: components, methods, and applications. International Journal of Cyber Behavior, Psychology and Learning (IJCBPL), 4(1), 1-14.