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Abstract: Practice improves our perceptual ability. However, the neural mechanisms underlying this
experience-dependent plasticity in adult brain remain unclear. Here, we studied the long-term neural corre-
lates of motion perceptual learning. Subjects’ behavioral performance and BOLD signals were tracked
before, immediately after, and 2 weeks after practicing a motion direction discrimination task in noise over
six daily sessions. Parallel to the specificity and persistency of the behavioral learning effect, we found that
training sharpened the cortical tuning in MT, and enhanced the connectivity strength from MT to the intra-
parietal sulcus (IPS, a motion decision-making area). In addition, the decoding accuracy for the trained
motion direction was improved in IPS 2 weeks after training. The dual changes in the sensory and the high-
level cortical areas suggest that learning refines the neural representation of the trained stimulus and facili-
tates the information transmission in the decision process. Our findings are consistent with the functional
specialization in the visual cortex, and provide empirical evidence to the reweighting theory of perceptual
learning at a large spatial scale. Hum Brain Mapp 38:6029–6042, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Our ability to discriminate or detect sensory stimuli can
be enhanced by practice. This phenomenon, known as per-
ceptual learning, is widely used as a model to study
experience-dependent cortical plasticity in adults [Fahle
and Poggio, 2002; Sagi, 2011; Watanabe and Sasaki, 2015].
One characteristic of perceptual learning is that the
acquired behavioral improvement is usually restricted to
the physical properties of the trained stimulus. Such spe-
cificity implies that learning is mediated by changes in the
early visual processing stage, among neurons with a rela-
tive small receptive field and feature-selective tuning [Pog-
gio et al., 1992]. Electrophysiological and brain imaging
studies have revealed learning-related changes at multiple
stages in the visual cortex, from the primary visual cortex
V1 [Hua et al., 2010; Jehee et al., 2012; Schoups et al.,
2001], extrastriate cortex such as V4 [Adab and Vogels,
2011], to object selective areas in the inferior temporal cor-
tex [Bi et al., 2014; Lim et al., 2015]. An alternative hypoth-
esis, however, assumes that perceptual learning engages
the high-level decision stage. Instead of changes in the
tuning properties of sensory encoding neurons, learning
can be modeled via adjusting the weights between the
early and late areas, so as to optimize the processing of
task-relevant information [Bejjanki et al., 2011; Dosher and
Lu, 1999; Law and Gold, 2009].

Compared to the “early” theory regarding the neural
locus of perceptual learning, the “late” theory has received
limited support from empirical evidence. A closely related
issue is how learning-induced changes in the sensory and
decision processes are implemented at a larger spatial
scale beyond local visual circuits. When multiple visual
areas participate in the information processing for a task,
would perceptual learning trigger reweighting at the
regional level? Take motion processing for example, MT
and V3A are recognized as two key areas in the human
brain [Bartels et al., 2008; Orban et al., 2003; Tootell et al.,
1997], and their involvement in motion perceptual learning
has been demonstrated in several brain imaging studies
[Chen et al., 2015, 2016; Shibata et al., 2012, 2016; Tompson
et al., 2013; Vaina et al., 1998]. Previously, we found
motion direction discrimination training sharpened the
cortical tuning for the trained motion direction in area
V3A, and enhanced the connectivity from V3A to the
motion-decision making area IPS (intraparietal sulcus)
[Chen et al., 2015]. While these results indicate that learn-
ing induces retuning in the visual cortex, and reweighting in
the high-level decision process, it remains unclear why
there was a lack of learning effect in area MT.

We hypothesized that the neural correlates of perceptual
learning are based on the functional specilization of visual
cortex. Neuropsychological findings suggest that V3A
dominates in local motion processing, whereas MT1 dom-
inates in global motion processing [Cai et al., 2014; Vaina
et al., 2003, 2005]. This specilization is consistent with the
learning-related changes in V3A when subjects practiced

motion direction discrimination at 100% coherence [Chen
et al., 2015, 2016]—as all dots move in the same direction,
subjects’ ability to discriminate motion directions relied on
the improvement in processing the local motion informa-
tion. Conversely, motion discrimination learning may be
mediated by MT/MST when global integration of motion
direction is necessary. To test this hypothesis, we intro-
duced external noise in the motion direction discrimina-
tion task by reducing the coherence level of the moving
dots.

In the present study, we studied the neural mechanisms
of motion perceptual learning in noise over a long-time
course. Human subjects were trained to discriminate the
global direction of moving dots at 35% coherence over six
daily sessions. Subjects’ behavioral performance and BOLD
signals were measured before, immediately after, and 2
weeks after training. We examined how learning affected
the activation pattern of the trained motion direction in V1-
V4, MT, MST, and IPS, using multi-voxel pattern analysis.
In addition, we examined whether learning changed the
effective connectivity between the visual motion areas and
IPS using dynamic causal modeling (DCM).

MATERIALS AND METHODS

Subjects

Fourteen subjects (nine females) participated in the study.
All subjects were right-handed with reported normal or
corrected-to-normal vision and had no known neurological
or visual disorders. Their ages ranged from 20 to 29 years.
They were na€ıve to the purpose of the study and had never
participated in any perceptual learning experiment before.
They gave written, informed consent in accordance with
the procedures and protocols approved by the human sub-
ject review committee of the Center for Cognition and Brain
Disorders, Hangzhou Normal University.

Stimuli and Apparatus

Subjects were viewing random dot kinematograms
(RDKs) consisting of 400 dark dots (luminance: 3.76 cd/
m2; diameter: 0.18), with a gray background (luminance:
27.5 cd/m2). The dots moved at a velocity of 378/s within
a virtual circular area subtending 98 in diameter (Fig. 1A).
In the psychophysical experiments, the stimuli were pre-
sented on a NESOJXC FS210A 21-in monitor (refresh rate:
60 Hz; spatial resolution: 1,024 3 768). Subjects viewed the
stimuli at a distance of 60 cm with their head stabilized by
a chin and headrest. They were asked to maintain fixation
throughout the tests.

DESIGNS

Each subject practiced motion direction discrimination
task during six daily sessions. On the day immediately
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before, after, and 2 weeks after training, they performed
pre-training test (Pre), post-training test 1 (Post1), and
post-training test 2 (Post2) (Fig. 1B).

Two RDKs were presented successively per trial, with
motion directions of h and h 6 Dh for 200 ms each and were
separated by a 600 ms blank interval (Fig. 1A). The temporal
order of these two RDKs was randomized. Subjects judged
whether the direction of the second RDK was clockwise or
counter-clockwise relative to the first one via a right-hand
finger press on the response key. After each response, feed-
back was provided to the subject by brightening (correct
response) or dimming (incorrect response) the fixation point.
The next trial began 1 s after feedback. Dh was estimated
adaptively from trial to trial with the QUEST staircase, to
quantify subjects’ discrimination threshold at 75% correct
[Watson and Pelli, 1983]. For each subject, the trained direc-
tion (h) was chosen randomly from eight non-cardinal direc-
tions (22.58, 67.58, 112.58, . . ., and 337.58), and was fixed for
all the training sessions. A daily session (about 1 hour) con-
sisted of 25 QUEST staircases of 40 trials. The discrimination
thresholds from these staircases were averaged, and then
plotted as a function of training day. The learning curves
were fitted with a power function [Jeter et al., 2009].

During each test phase, subject’ motion direction dis-
crimination thresholds were measured at four motion
directions, 08, 308, 608, and 908 deviated from the trained
direction (hereafter referred to as 08, 308, 608, and 908) in
both psychophysical and fMRI tests. Discrimination
thresholds from 10 Quest staircases for each direction
were averaged as a measure of subjects’ discrimination
performance. Subjects’ performance improvement at each

motion direction was calculated as (pre-training threshold –
post-training threshold)/pre-training threshold 3 100%. The
learning effect specific to the trained direction was quantified
as Imp (trained) – Imp (untrained), where the improvement for
the untrained directions was the average improvement for
the 308, 608, and 908 directions.

After psychophysical measurements, subjects’ BOLD sig-
nals responding to the four motion directions in 16 fMRI
runs were acquired in two daily sessions (eight runs per ses-
sion). Similar to the task in psychophysical tests, subjects per-
formed motion direction discrimination during scan. In a
trial, two RDKs were each presented for 200 ms and were
separated by a 600 ms blank interval, followed by a 1,400 ms
blank interval between trials. For the directions of the two
RDKs, one was fixed in a block and could be 08, 308, 608, or
908. The other deviated from the fixed one by 6 Dh, which
was the discrimination threshold measured in the corre-
sponding psychophysical test, to make subjects perform
equally well at 75% correct across the stimulus conditions
and tests. At Pre, we had a fifth condition, in which the
RDKs of 08 and 0.53Dh were presented. Each stimulus block
consisted of five trials. Each run contained 10 stimulus blocks
of 12 s, two blocks for one of five stimulus conditions. Stimu-
lus blocks were interleaved with 12 s fixation blocks. Prior to
the experiment, subjects practiced 10 staircases for each direc-
tion to get familiar with the experimental procedure.

Defining Regions of Interest

Retinotopic mapping of visual areas was performed
using standard phase-encoded methods developed by

Figure 1.

Stimuli and experimental protocol. (A) Schematic description of a two-alternative forced-choice

(2-AFC) trial in a QUEST staircase for measuring motion direction discrimination thresholds. (B)

Experimental protocol. Subjects underwent eight daily training sessions. The pre-training test

(Pre) and the post-training test 1 (Post1) and test 2 (Post2) took place on the days before,

immediately after, and 2 weeks after training.
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Sereno et al. [1995] and Engel et al. [1997], in which sub-
jects viewed a rotating wedge or an expanding ring that
created traveling waves of neural activity in visual cortex.
An independent run was performed to define the regions
of interest (ROIs) in areas V1, V2, V3, V3A, V4, MT, MST,
and IPS. The run contained eight moving dot blocks of
12 s, interleaved with stationary dot blocks of 12 s. The
size and luminance of the RDK stimulus in the motion
localizer was identical to that in the main experiment. In
motion blocks, each dot moved in a random direction. The
dots traveled back and forth, alternating directions once
per second. ROIs were identified as cortical areas that
responded more strongly to the moving dot blocks than to
the stationary dot blocks. Identification of MT and MST
were further constrained by the probability maps created
by Abdollahi et al. [2014]. IPS was defined as a set of sig-
nificantly responsive voxels in the medial dorsal intrapar-
ietal sulcus, which was referred to as the DIPSM [Orban,
2016].

MRI Data Acquisition

Subjects underwent seven MRI sessions - one for retino-
topic mapping, two for Pre, Post1, and Post2, respectively.
MRI data were collected using a 3T MR750 General Elec-
trical scanner with a 32-channel head coil. In the scanner,
the stimuli were back-projected via a video projector
(refresh rate: 60 Hz; spatial resolution: 1,024 3 768) onto a
translucent screen placed inside the scanner bore. Subjects
viewed the stimuli through a mirror located above their
eyes. A high-resolution 3D structural data set (3D
MPRAGE; 1 3 1 3 1 mm3 resolution) was collected before
functional runs. BOLD signals were measured with an EPI
sequence (TE: 30 ms; TR: 2,000 ms; FOV: 192*192 mm2;
matrix: 64 3 64; flip angle: 708; slice thickness: 3 mm; gap:
0 mm; number of slices: 42; slice orientation: axial).

MRI Data Preprocessing

The anatomical volume for each subject at Pre was trans-
formed into the anterior commissure-posterior commissure
(AC-PC) space [Talairach and Tournoux, 1988]. Functional
volumes were preprocessed using BrainVoyager QX,
including 3D motion correction, linear trend removal, and
high-pass filtering (0.015 Hz) [Smith et al., 1999]. Head
motion within any MRI session was less than 3 mm for any
given subject. The functional volumes were then aligned to
the anatomical volume and transformed into the AC-PC
space. The first 6 s of BOLD volumes were discarded to
minimize transient magnetic saturation effects.

Univariate Analysis

For each ROI, the time course of the BOLD signal per
run was first extracted by averaging the signals from all
the voxels. Then, beta values for the five stimulus

conditions were estimated with a GLM procedure. The
BOLD amplitude for each condition was the averaged beta
values across 16 runs. To quantify the amplitude differ-
ence for the trained direction while subtracting out the dif-
ference for the untrained directions, we defined the
learning modulation index (LMI) [Op de Beeck et al.,
2006] as [Amp (trained, post-training) – Amp (trained, pre-
training)] – [Amp (untrained, post-training) – Amp (untrained,
pre-training)]. The amplitude for the untrained condition
was defined as the average amplitude for the 308, 608, and
908 directions. The LMI measures isolated those effects
specific to the trained direction, thus distinguished the
perceptual learning effect from general practice effects or
common sources of confounds (e.g., day-to-day measure-
ment variation). An index significantly above/below zero
indicates that training increased/decreased the BOLD sig-
nal specific to the trained direction.

Multivariate Decoding Analysis

Decoding analysis was performed to classify the activa-
tion patterns evoked by pairs of motion directions. The
analysis was based on all the voxels within each ROI. A
GLM procedure was first used to estimate beta values for
individually responsive voxels in each stimulus block,
resulting in 32 patterns per test for each stimulus condi-
tion. These patterns were used for training linear support
vector machine (SVM) classifiers (www.csie.ntu.edu.tw/
~cjlin/libsvm) and calculating the average decoding accu-
racy following a 16-fold cross-validation procedure. For
each permutation, we trained classifiers on 30 training pat-
terns and tested their accuracy on the remaining two pat-
terns. Similarly, we defined the LMI for decoding accuracy
as [Acc(trained, post-training) – Acc (trained, pre-training)] –
[Acc (untrained, post-training) – Acc (untrained, pre-training)],
where Acc stands for decoding accuracy. The decoding
accuracy for the trained condition was defined as the clas-
sification accuracy between 08 and 308, while the decoding
accuracy for untrained condition was defined as the classi-
fication accuracy between 608 and 908.

Tuning functions were constructed based on the perfor-
mance of all binary classifiers (e.g., 308 vs. 908) using a 16-
fold cross-validation procedure. Neural activity patterns
induced by each motion direction were predicted by the
classifier as one of the four directions, and the classifica-
tion rate was plotted as a function of the angular differ-
ence between the classified direction and viewed direction
[Zhang et al., 2010]. For example, the y value at x 5 0 indi-
cates the rate of correct classification, when the trained
direction was classified as itself; the y value at x 5 230
indicates the rate of misclassification, when 308 was classi-
fied as the trained direction; the y value at x 5 308 indi-
cates the rate of misclassification, when the trained
direction was classified as 308. We then fitted the
averaged pattern-based tuning function using a Gaussian
function:y5Aexp ð2x2̂=2r2̂ÞÞ1C, where A is the scaling
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parameter, r is the standard deviation, and C is the
baseline.

Dynamic Causal Modeling

DCM, an approach for estimating effective strength of
synaptic connections among neuronal populations and their
context-dependent modulation, was performed to examine
whether there was any connectivity change between sen-
sory areas and decision-making areas after training. We
estimated the effective connectivities between IPS and two
visual areas MT and V3A using DCM in SPM10 [Friston,
2007]. For each area, time series from voxels within a 5-
mm-radius sphere centered on the most responsive voxel in
the localizer run were extracted for the DCM analysis in
both hemispheres. The estimated DCM parameters were
later averaged using the Bayesian model averaging method
[Friston, 2007]. The mean MNI coordinates of these voxels
and the SEs across subjects in MT, V3A, and IPS were
(41.08 6 1.1, 271.33 6 1.7, 4.25 6 1.2), (24.2 6 4.1, 286.9 6 1.2,

16.17 6 2.0), and (23.6 6 4.0, 261.2 6 2.5, 47.5 6 1.5) for
the right hemisphere; (–43.26 6 1.1, 269.54 6 2.0, 6.03 6

1.4), (–25.1 6 4.6, 287.4 6 1.0, 12.5 6 2.2) and (–21.6 6 4.1,
263.5 6 2.9, 47.7 6 1.9) for the left hemisphere.

DCM models neural population dynamics using a bilin-
ear model and a hemodynamic model [Friston et al., 2003].
The model consists of three sets of parameters: extrinsic
inputs into one or more regions, intrinsic connectivity
among the modeled regions, and parameters encoding the
modulation of the specified intrinsic connections by exper-
imental manipulations. FMRI data were modeled with a
GLM procedure, including regressors for the trained or
the untrained motion direction as the modulatory input
from MT/V3A to IPS, as well as a condition comprising
all the directions as the extrinsic input to MT/V3A (Fig.
7A). Bidirectional intrinsic connections were hypothesized
to exist between IPS and MT/V3A, and the strengths of
these connections were modulated by either the trained
or the untrained directions. For each subject, we examined
the modulatory effects in recurrent, feedforward, and feed-
back models. Using a hierarchical Bayesian approach, we

Figure 2.

Psychophysical results. (A) Learning curve. Motion direction dis-

crimination thresholds are plotted as a function of training day.

(B) Motion direction discrimination thresholds for the trained

direction (08) and the untrained directions (308, 608, and 908) at

Pre, Post1, and Post2. Asterisks indicate significant difference

between Pre and Post1, Post2 (***P< 0.001). (C) Percent

improvement in motion direction discrimination performance

for the trained and untrained directions at Post1 and Post2, rel-

ative to Pre. The asterisk indicates significant difference between

the trained and the untrained directions (***P< 0.001). Error

bars denote 1 SEM across subjects.
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computed the exceedance probability for each model, that
is, the probability to which a given model is more likely
than the other two models to have generated data from a
randomly selected subject. In the model with the highest
exceedance probability, we examined changes in the mod-
ulatory effects for either the trained or the untrained direc-
tions at Post1 and Post2, relative to Pre.

RESULTS

Psychophysical Results

Subjects underwent six daily training sessions (1,000 tri-
als per session) to perform motion direction discrimination
around a non-cardinal direction (Fig. 1A). Throughout the
training, subjects’ discrimination thresholds gradually
decreased and saturated after day 4 (Fig. 2A).

We compared their discrimination thresholds on the days
before (Pre), immediately after (Post1), and 2 weeks after
training (Post2) (Fig. 1B). Repeated-measures ANOVA
revealed a significant main effect of test (F(2, 26) 5 18.97,
P< 0.01) and a significant interaction between test and
direction (F(6, 78) 5 9.74, P< 0.01) (Fig. 2B). The percent
improvements for the trained direction were 34% at Post1

and 36% at Post2, which were significantly higher than those
for the untrained directions (<11%) (all t(13)> 4.20, P< 0.01)
(Fig. 2C). These results demonstrate that training induced
specific and persistent behavioral improvement for the
trained motion direction.

Univariate Amplitude Analysis of fMRI Data

FMRI data analyses were focused in eight ROIs, includ-
ing V1, V2, V3, V3A, V4, MT, MST, and IPS. With the uni-
variate amplitude analysis, we examined whether training
could lead to changes in the averaged BOLD amplitude
for the trained direction, compared with the untrained
directions. We found no significant main effect of test (all
F(2, 26)< 1.73, P> 0.19), and no significant interaction
between test and direction (all F(2, 26)< 1.08, P> 0.35) in
any of the eight ROIs (Fig. 3A).

The LMI (see Materials and Methods) was defined to
isolate the BOLD amplitude change specific to the trained
direction. An index significantly above/below zero indi-
cates that training increased/decreased the BOLD signal to
the trained direction. Consistent with the ANOVA results
above, no significant index was found in any ROI (Fig.
3B). Thus, no learning-specific effect was observed on the

Figure 3.

Results of the univariate analysis of fMRI data. (A) BOLD amplitudes for the trained and

untrained directions. (B) LMIs for BOLD amplitude. Error bars denote 1 SEM across subjects.
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average BOLD amplitudes evoked by the trained and
untrained motion directions.

Multivariate Pattern Analysis of fMRI Data

We examined whether training led to specific improve-
ment in the decoding accuracy of the trained condition.
Decoding accuracies for 08 versus 308 (trained condition)
and 608 versus 908 (untrained condition) were submitted

to a repeated-measures ANOVA. While there was no sig-
nificant main effect of test in any ROI (all F(2, 26)< 0.79,
P> 0.46), we found a significant interaction between test
and direction in MT (F(2, 26) 5 6.07, P< 0.01) and IPS (F(2,
26) 5 4.70, P 5 0.02), suggesting specific learning effect on
the decoding accuracies for the trained compared to the
untrained conditions (Fig. 4A). MT exhibited a signifi-
cantly positive LMI at both Post1 (t(13) 5 2.25, P 5 0.04)
and Post2 (t(13) 5 3.81, P< 0.01) (Fig. 4B), demonstrating
that the improved decoding accuracy in MT persisted over

Figure 4.

Results of the multivariate pattern analysis of fMRI data. (A) Decoding accuracies for the trained

and untrained directions. (B) LMIs for decoding accuracy. Asterisks indicate the index signifi-

cantly above zero (*P< 0.05, **P< 0.01). (C) LMIs for decoding accuracy as a function of voxel

number in MT and IPS. Error bars denote 1 SEM across subjects.
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the long time course of the perceptual learning. Mean-
while, a higher-level cortical area IPS, has a significantly
positive index at Post2 (t(13) 5 2.38, P 5 0.03), indicating
an improved decoding accuracy in the decision-related
area in the late stage of perpetual learning.

To examine whether the finding depended on the num-
ber of selected voxels, the decoding performance was
tested on the most responsive voxels with a range from 10
to 100, in MT and IPS (Fig. 4C). The LMI for decoding
accuracy in MT was significantly above zero at Post1 and
Post2, when at least 80 voxels were selected (all
t(13)> 2.19, P< 0.05). The LMI for decoding accuracy in
IPS was significantly above zero at Post2 when at least 90
voxels were selected (both t(13)> 2.16, P< 0.05). These
results demonstrate that the finding in MT and IPS was
robust when a majority of voxels were selected.

Note that to match subjects’ discrimination performance,
the motion stimuli at Pre, Post1, and Post2 were slightly
different. We tested whether the observed fMRI effect was
due to this slight change of the threshold Dh. We found
that, in all the ROIs, using a different Dh acquired at Pre
had little effect on the beta value (all t(13)< 1.59, P> 0.14)
and decoding accuracy (all t(13)< 2.10, P> 0.05) for the
trained condition. It suggests that the observed fMRI
effects were not due to the stimulus difference.

To further characterize the learning-related changes of
neural activity patterns in the sensory stage, we plotted
pattern-based similarity functions to reflect the accurate clas-
sification for the trained direction as well as the misclassifi-
cations between the trained and untrained directions. In
MT, the similarity tunings were sharpened after learning.
Repeated-measures ANOVA on the classification propor-
tions under seven angular differences across test sessions
revealed a significant interaction between test and direction
(Pre vs. Post1: F(6, 78) 5 3.53, P< 0.01; Pre vs. Post2: F(6,
78) 5 5.16, P< 0.01) (Fig. 5A). We fitted the channel response
profiles with a Gaussian function and used r (the standard
deviation) to quantify the tuning width between pre- and

post-tests. The bandwidth of the pattern-based tuning func-
tion reduced significantly from Pre (r 5 16.87) to Post1
(r 5 12.21) and Post2 (r 5 12.62) (both t(13)> 4.77, P< 0.01).
In IPS, the interaction between test and condition was
not significant, both for Pre versus Post1 (F(6,78) 5 0.20,
P 5 0.98), and for Pre versus Post2 (F(6,78) 5 2.06, P 5 0.07).
These results further demonstrate that learning led to a
long-term differentiation in neural representation specific to
the trained motion direction in MT.

Effective Connectivity Analysis of fMRI Data

As the homologue of monkey LIP [Orban, 2016; Sereno
et al., 2001], human IPS plays an important role in motion
decision-making [Heekeren et al., 2008; Kayser et al., 2010;
Tosoni et al., 2008]. To test whether learning affected the
decision routes above the sensory stage, we performed DCM
analysis with hypothesized bidirectional intrinsic connections
between MT/V3A and IPS. Given the extrinsic input to MT
and V3A, we examined the modulatory effect by the trained
and the untrained stimuli at different connections in feedfor-
ward, feedback, and recurrent models (Fig. 6A).

For the trained condition, we computed the exceedance
probability of each model [Friston et al., 2006]. The result
showed that the feedforward, feedback, and recurrent
models had exceedance probabilities of 0.02%, 48.2%, and
51.8%, respectively, suggesting that the recurrent model
was the best one to explain the modulatory effect by the
trained direction (Fig. 6B). We further compared the mod-
ulatory effects at Pre, Post1, and Post2. The modulatory
effect on the forward connection from MT to IPS showed a
significant increase at Post1 (t(13) 5 3.01, P 5 0.01) and a
significant increase at Post2 (t(13) 5 2.75, P 5 0.02), com-
pared to Pre. In contrast, little change was found in the
feedback connection from IPS to MT or the connections
between V3A and IPS (all t(13)< 1.54, P> 0.14) (Fig. 6C).

For the untrained condition, the exceedance probabilities
of the feedforward, feedback, and recurrent models were

Figure 5.

Pattern-based tuning functions for motion direction in MT and IPS. Symbols indicate average data

across subjects; solid lines indicate the best fit of a Gaussian to the averaged data. Error bars

denote 1 SEM across subjects. [Color figure can be viewed at wileyonlinelibrary.com]
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6.5%, 18.1%, and 75.4%, respectively, suggesting that the
modulatory effect by the untrained directions could also
be best explained by the recurrent model (Fig. 6D). How-
ever, little change was found in the modulatory effect of
the connections between MT/V3A and IPS (all t(13)< 1.55,
P> 0.14) (Fig. 6E).

Links Between the Behavioral Improvement and

Neural Changes

To evaluate the role of the neural changes revealed in
noisy motion perceptual learning, we calculated the corre-
lation coefficients between the behavioral improvement

and the neural changes (i.e., changes in the bandwidth of
pattern-based tuning in MT/IPS, and in connectivity
strength from MT to IPS) specific to the trained direction
across individual subjects. Significant correlations were
found between the performance change and the band-
width change in MT at both Post1 (r 5 0.73, P< 0.01) and
Post2 (r 5 0.60, P 5 0.02) (Fig. 7A,B). No significant correla-
tions were found between the performance change and
bandwidth change in IPS (Fig. 7C,D), or between the per-
formance change and connectivity change (Fig. 7E,F).
These results suggest the sharpening of the pattern-based
tuning functions in MT as the critical neural substrate
underlying the behavioral learning effect.

Figure 6.

Dynamic causal modeling of connectivities between V3A and IPS

and between MT and IPS. (A) Recurrent, feedforward, and feed-

back models for modeling the modulatory effect by the trained

or the untrained directions. (B) Exceedance probabilities for the

three models with the trained direction as the modulatory

input. (C) Changes in the modulatory effect by the trained

direction at Post1 and Post2, relative to Pre. (D) Exceedance

probabilities for the three models with the untrained directions

as the modulatory input. (E) Changes in the modulatory effect

by the untrained directions at Post1 and Post2, relative to Pre.
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DISCUSSION

We studied the neural mechanisms of perceptual learn-
ing, using motion direction discrimination training para-
digm with noisy stimuli. Behaviorally, training led to a
specific improvement in the trained direction and was
well preserved after 2 weeks. We found that motion

perceptual learning in noise (1) increased decoding accura-
cies in MT, (2) sharpened pattern-based tuning functions
in MT, which correlated with subjects’ behavioral
improvement, and (3) enhanced feedforward connectivity
from MT to IPS. In addition, there was an emergence of
increased neural decoding accuracy in IPS 2 weeks after
training.

Figure 7.

Correlations between the behavioral improvement and neural

changes specific to the trained motion direction at Post1 (A, C,

E) and Post2 (B, D, F). (A, B) Correlations between the behav-

ioral improvement and the bandwidth change in MT. (C, D) Cor-

relations between the behavioral improvement and the

bandwidth change in IPS. (E, F) Correlations between the behav-

ioral improvement and the connectivity change. The asterisk

indicates the significance level of the correlation coefficient at

Post1 (*P< 0.05, **P< 0.01).
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Our results lend strong support for the long-term
involvement of MT in motion perceptual learning in noise.
Learning-related changes had been observed in MT/MST
in previous electrophysiological and imaging studies
[Vaina et al., 1998; Zohary et al., 1994], with a focus on the
effect induced within a single session of training. For
example, training monkeys to discriminate the direction of
motion in a noisy display resulted in enhancement of the
neural sensitivity in MT and MST across the first 400 trials
within the same training day [Zohary et al., 1994]. The
within-session learning effect in MT1 was also observed
in a human fMRI study [Vaina et al., 1998]. However, such
“fast” or “warm-up” learning effects may be different
from the typical effect of perceptual learning, which
requires intensive training over thousands of trials across
multiple days for the behavioral performance to reach an
asymptote. The present study demonstrated MT as the
neural substrate of the accumulated behavioral effect over
six daily training sessions. In addition, the learning-
specific neural change in MT lasted over 2 weeks after
training ended, and was correlated with individual behav-
ioral improvement. These persistent changes in MT dem-
onstrate a fundamental role of MT in motion perceptual
learning with noise.

It should be noted that the learning-related changes we
observed in MT were not in the average BOLD amplitude,
but in the spatial activation pattern evoked by the trained
stimuli. Findings from previous studies suggest that
changes in the overall neural activation to the trained
stimulus may not be an effective indicator of perceptual
learning. For example, it has been demonstrated that learn-
ing generates changes in the average BOLD amplitude
immediately after training. However, after a few weeks,
the changes either faded out [Yotsumoto et al., 2008], or
failed to predict the persistent behavioral improvement [Bi

et al., 2014]. So far, in perceptual learning studies with a
near-threshold discrimination task, the modulation direc-
tion in the overall BOLD amplitude are mixed [Jehee et al.,
2012; Mukai et al., 2007; Op de Beeck et al., 2006; Schwartz
et al., 2002]. Instead of changes in the overall BOLD ampli-
tude, we found a learning-specific increase in the decoding
accuracy in MT, which suggests that training refined the
neural representation of the trained stimuli to make it
more distinguishable. The increase in decoding accuracy
and the reduction of bandwidth in the pattern-based tun-
ing in MT may reflect the sharpening of direction-tuned
responses at the population level [Bejjanki et al., 2011;
Schoups et al., 2001]. The enhanced population coding effi-
ciency was also consistent with the reduction of interneu-
ronal correlation induced by perceptual learning in
macaque visual cortex [Gu et al., 2011]. Similar training-
induced changes in the spatial activation patterns in the
sensory cortex have also been observed in discrimination
training with orientation [Jehee et al., 2012], form [Zhang
et al., 2010], or motion [Chen et al., 2015, 2016].

Our findings demonstrate that perceptual learning opti-
mizes the sensory processing based on the functional spe-
cialization in the visual cortex. While motion discrimination
training at 100% coherence led to improved neural sensitiv-
ity in V3A [Chen et al., 2015], motion discrimination train-
ing at 35% coherence improved neural sensitivity in MT
(see Fig. 8 for a comparison). Neuropsychological evidence
suggests that V3A and MT1 play different roles in local
and global motion processing [Cai et al., 2014; Vaina et al.,
2003, 2005]. The specialization of V3A in coherent motion
processing might be due to its greater capacity to process
local motion signals, which is underpinned by its relatively
small receptive field sizes and narrow tuning curves for
motion direction [Lee and Lee, 2012; Wandell and Winawer,
2015]. Conversely, when external noise serves as the

Figure 8.

A comparison between the neural changes induced by motion perceptual learning with 100% and

35% coherence RDKs. Two-way ANOVAs reveal a significant interaction between stimulus

coherence and ROI for the LMIs for decoding accuracy at Post1 and Post 2 (both F(1,29)> 5.37,

P< 0.03). Motion perceptual learning data at 100% coherence are from Chen et al., NeuroImage,

2015, 115, 17–29, reproduced by permission.
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fundamental limit, noise exclusion is suggested to be the
major mechanism of perceptual learning [Dosher and Lu,
2005]. The specialization of MT in noisy motion processing
can be based on its large receptive field size [Albright,
1984]. During the spatial pooling of local motion, neurons
in MT operate to average out motion noise to extract the
global motion direction. In line with this hypothesis, a
recent electrophysiological study showed that motion learn-
ing in noise enhanced subjects’ spatial integration ability,
with a critical contribution of MT [Liu and Pack, 2017].
Compared to learning in a clear display, learning in noise
often induces neural changes in a higher-level cortical area,
subserved by its larger receptive field size and broader tun-
ing width. A similar effect has also been observed in orien-
tation learning—while training without noise altered neural
activities in V1 [Schoups et al., 2001], training in noise led
to changes in V4 [Adab and Vogels, 2011].

The current study used motion stimuli at a high speed,
which may not be optimal for psychophysical performance
or MT neurons [Lagae et al., 1993; Orban et al., 1985; Pilly
and Seitz, 2009; Seitz et al., 2008]. However, it is still within
the effective range of parameters to activate MT [Liu and
Newsome, 2003; van Essen and Maunsell, 1983; Rodman
and Albright, 1987]. One advantage of using non-optimal
stimuli is that the effect of learning could be more pro-
nounced with non-optimal stimuli—direction/orientation
discrimination learning leads to greater improvement in
non-cardinal than in cardinal directions/orientations [Ball
and Sekuler, 1987; Vogels and Orban, 1985]. In addition,
motion learning occurred even without motion perception
with sub-threshold motion stimuli [Watanabe et al., 2001].
These results suggest that learning can be triggered by non-
optimal stimuli, at both behavioral and cortical levels.

As the sensory signal of learned motion direction
became better represented in MT, the way in which sen-
sory signals were relayed to and weighted by decision-
making areas was also changed. DCM analysis demon-
strated an increase in the feedforward connectivity from
MT to IPS. Previously, we found that motion direction dis-
crimination training at 100% coherence enhanced feedfor-
ward connectivity from V3A to IPS [Chen et al., 2015].
Together with the electrophysiological findings showing
the involvement of macaque LIP in motion discrimination
training [Law and Gold, 2008], our results support the
idea that the learning process could be modeled as a high-
level decision unit refining its pooling from the most rele-
vant sensory neurons through response reweighting
[Dosher et al., 2013; Law and Gold, 2009].

The long-term neural substrate of perceptual learning is
another important, yet less addressed issue. Perceptual
learning is characterized by its persistency in the behav-
ioral improvement. Once learned, the visual performance
can be well maintained over months or years without
additional training [Bi et al., 2010; Karni and Sagi, 1993].
In this study, parallel to the behavioral improvement, we
found cortical changes immediately after training, in the

neural representation in MT and the connectivity from MT
to IPS. Two weeks after training, in addition to the exist-
ing changes, we discovered an emergence of enhanced
decoding accuracy in IPS. This result suggests that the
related cortical network may undergo adjustment over a
long-time course, even after training ended. These findings
extend our understanding of the learning-induced tempo-
ral dynamics within the sensory cortex [Chen and Fang,
2011; Molina-Luna et al., 2008; Yotsumoto et al., 2008],
indicating that the plasticity in sensory and high-level
stages might be triggered at successive time points during
the development of perceptual learning.

In comparison with motion learning in a clear display
[Chen et al., 2015], we found that motion perceptual learn-
ing in noise led to changes in a different cortical locus along
the visual dorsal pathway. These results suggest that learn-
ing induces changes in the sensory area based on the func-
tional specialization. Meanwhile, our findings revealed a
common neural mechanism underlying motion perceptual
learning. First, motion discrimination training with both
clear and noisy stimuli induced a refined neural representa-
tion in the visual cortex. Second, training enhanced cortico-
cortical communication between the sensory area with a
better representation for the trained visual feature and the
high-level decision unit. Third, the neural changes accu-
rately captured the specificity and persistency observed in
the behavioral learning effect. These findings indicate that
low-level and high-level processes work in cohort to opti-
mize the learned visual signal in a long-time course.
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