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Abstract

This paper compares the ability of human observers to detect target im-
age curves with that of an ideal observer. The target curves are sam-
pled from a generative model which specifies (probabilistically) the ge-
ometry and local intensity properties of the curve. The ideal observer
performs Bayesian inference on the generative model using MAP esti-
mation. Varying the probability model for the curve geometry enables us
investigate whether human performance is best for target curves that obey
specific shape statistics, in particular those observed on natural shapes.
Experiments are performed with data on both rectangular and hexagonal
lattices. Our results show that human observers’ performance approaches
that of the ideal observer and are, in general, closest to the ideal for con-
ditions where the target curve tends to be straight or similar to natural
statistics on curves. This suggests a bias of human observers towards
straight curves and natural statistics.

1 Introduction

Detecting curves in images is a fundamental visual task which requires combining local
intensity cues with prior knowledge about the probable shape of the curve. Curves with
strong intensity edges are easy to detect, but those with weak intensity edges can only be
found if we have strong prior knowledge of the shape, see figure (1) But, to the best of
our knowledge, there have been no experimental studies which test the ability of human
observers to perform curve detection for semi-realistic stimuli with locally ambiguous in-
tensity cues or to explore how the difficulty of the task varies with the geometry of the
curve.

This paper formulates curve detection as Bayesian inference. Following Geman and Je-
dynak [6] we define probability distributions PG(.) for the shape geometry of the target
curve and Pon(.), Poff (.) for the intensity on and off the curve. Sampling this model gives
us semi-realistic images defined on either rectangular or hexagonal grids. The human ob-
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Figure 1: It is plausible that the human visual system is adapted to the shape statistics of curves
and paths in images like these. Left panel illustrates the trade-off between the reliability of intensity
measurements and priors on curve geometry. The tent is easy to detect because of the large intensity
difference between it and the background, so little prior knowledge about its shape is required. But
detecting the goat (above the tent) is harder and seems to require prior knowledge about its shape.
Centre panel illustrates the experimental task of tracing a curve (or road) in clutter. Right panel shows
that the first order shape statistics from 49 object images (one datapoint per image) are clustered
round P (straight) = 0.64 (with P (left) = 0.18 and P (right) = 0.18) for both rectangular and
hexagonal lattices, see [1].

server’s task is to detect the target curve and to report it by tracking it with the (computer)
mouse. Human performance is compared with that of an ideal observer which computes
the target curve using Bayesian inference (implemented by a dynamic programming algo-
rithm). The ideal observer gives a benchmark against which human performance can be
measured.

By varying the probability distributions PG, Pon.Poff we can explore the ability of the
human visual system to detect curves under a variety of conditions. For example, we can
vary PG and determine what changes in Pon.Poff are required to maintain a pre-specified
level of detection performance.

In particular, we can investigate how human performance depends on the geometrical dis-
tribution PG of the curves. It is plausible that the human visual system has adapted to the
statistics of the natural world, see figure (1), and in particular to the geometry of salient
curves. Our measurements of natural image curves, see figure (1), and studies by [16],
[10], [5] and [2], show distributions for shape statistics similar to those found for image
intensities statistics [11, 9, 13]. We therefore investigate whether human performance ap-
proaches that of the ideal when the probability distributions PG is similar to that for curves
in natural images.

This investigation requires specifying performance measures to determine how close hu-
man performance is to the ideal (so that we can quantify whether humans do better or
worse relative to the ideal for different shape distributions PG). We use two measures of
performance. The first is an effective order parameter motivated by the order parameter
theory for curve detection [14], [15] which shows that the detectability of target curves, by
an ideal observer, depends only on an order parameter K which is a function of the prob-
ability distributions characterizing the problem. The second measure computes the value
of the posterior distribution for the curves detected by the human and the ideal and takes
the logarithm of their ratio. (For theoretical reasons this is expected to give a performance
measure similar to the effective order parameter).

The experiments are performed by human observers who are required to trace the target
curve in the image. We simulated the images first on a rectangle grid and then on a hexag-
onal grid to test the generality of the results. In these experiments we varied the probability
distributions of the geometry PG and the distribution Pon of the intensity on the target curve
to allow us to explore a range of different conditions (we kept the distribution Poff fixed).

In section (2) we briefly review previous psychophysical studies on edge detection. Sec-
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Figure 2: Left panel: the tree structure superimposed on the lattice. Centre panel: a pyramid struc-
ture used in the simulations on the rectangular grid. Right panel: Typical distributions of Pon, Poff

tion (3) describes our probabilistic model and specifies the ideal observer. In section (4), we
describe the order parameter theory and define two performance measures. Sections (5,6)
describe experimental results on rectangular and hexagonal grids respectively in terms of
our two performance measures.

2 Previous Work

Previous psychophysical studies have shown conditions for which the human visual sys-
tem is able to effectively group contour fragments when embedded in an array of distract-
ing fragments [3, 8]. Most of these studies have focused on the geometrical aspects of
the grouping process. For example, it is known that the degree to which a target contour
“pops out” depends on the degree of similarity of the orientation of neighboring fragments
(typically gabor patches) [3], and that global closure facilitates grouping [8].

Recently, several researchers have shown that psychophysical performance for contour
grouping may be understood in terms of the statistical properties of natural contours [12, 5].
For example, Geisler [5] has shown that human contour detection for line segments can be
quantitatively predicted from a local grouping rule derived from measurements of local
edge statistics.

However, apart from studies that manipulate the contrast of gabor patch tokens [4], there
has been little work on how intensity and contour geometry information is combined by the
visual system under conditions that begin to approximate those of natural contours. In this
paper we attempt to fill this gap by using stimuli sampled from a generative model which
enables us to quantitatively characterize the shape and intensity information available for
detecting curves and compare human performance with that of an ideal detector.

3 The Probabilistic Model for Data Generation

We now describe our model in detail. Following [6], we formulate target curve detection as
tree search, see figure (2), through a Q-nary tree. The starting point and initial direction is
specified and there are QN possible distinct paths down the tree. A target curve hypothesis
consists of a set of connected straight-line segments called segments. We can represent a
path by a sequence of moves {ti} on the tree. Each move ti belongs to an alphabet {aµ} of
size Q. For example, the simplest case sets Q = 3 with an alphabet a1, a2, a3 correspond-
ing to the decisions: (i) a1 – go straight (0 degrees), (ii) a2 – go left (-5 degrees), or (iii)
a3 – go right (+ 5 degrees). This determines a path x1, . . . ,xN in the image lattice where
xi,xi+1 indicate the start and end points of the ith segment. The relationship between the
two representations is given by xi+1 = xi + w(xi − xi−1, ti), where w(xi − xi−1, ti) is
a vector of approximately fixed magnitude (choosen to ensure that the segment ends on a
pixel) and whose direction depends on the angle of the move ti relative to the direction of
the previous segment xi − xi−1. In this paper we restrict Q = 3.



We put a prior probability on the geometry of paths down the tree. This is of form
P ({ti}) =

∏N

i=1
P (ti). We will always require that the probabilities to go left or right

are equal and hence we can specify the distribution by the probability P (straight) that the
curve goes straight. Our analysis of image curve statistics suggests that P (straight) =
0.64 for natural images, see figure (1).

We specify the probability models Pon, Poff for the image intensity on and off to be
of Poisson form defined over the range (1, ..., 16), see figure (2). This reduced range
means that the distributions are expressed as Pon(I = n) = (1/Kon)e−λonλn

on/n! and
Poff (I = n) = (1/Koff )e−λoff λn

off/n!, where Kon, Koff are normalization factors. We
fix λoff = 8.0 and will vary λon. The quantity λon − λoff is a measure of the local in-
tensity contrast of the target contour and so we informally refer to it as the signal-to-noise
ratio (SNR).

The Ideal Observer estimates the target curve trajectory by MAP estimation (which we
compute using dynamic programming). As described in [6], MAP estimation corresponds
to finding the path {ti} with filter measurements {yi} which maximizes the (scaled) log-
likelihood ratio, or reward function,

r({ti}, {yi}) =
1

N
{log P (Y |X) + log P (X)−

N∑

i=1

log U(ti)}

=
1

N

N∑

i=1

log{Pon(yi)/Poff (yi)}+
1

N

N∑

i=1

log{PG(ti)/U(ti)}, (1)

where U(.) is the uniform distribution (i.e. U(t) = 1/3 ∀t) and so
∑N

i=1
log U(ti) =

−N log 3 which is a constant. The length of the curve is N = 32 in our experiments.

We implement this model on both rectangular and hexagonal lattices (the hexagonal latt-
tices equate for contrast at borders, and are visually more realistic). The tree representation
used by Geman and Jedynak must be modified when we map onto these lattices. For a
rectangular lattice, the easiest way to do this involves defining a pyramid where paths start
at the apex and the only allowable “moves” are: (i) one step down, (ii) one step down
and one step left, and (iii) one step down and one step right. This can be represented by
xi+1 = xi+w(ti) where ti ∈ {−1, 0, 1} and w(−1) = −~i−~j, w(0) = −~j, w(1) = +~i−~j

(where~i,~j are the x, y directions on the lattice).

A similar procedure is used on the hexagonal lattice. But for certain geometry probabil-
ities we observed that the sampled curves had “clumping” where the path consists of a
large number of zig-zags. This was sometimes confusing to the human observers. So we
implemented a higher-order Markov model which explicitly forbade zig-zags. We show
experimental results for both the Clumping and No-Cluming models.

To obtain computer simulations of target curves in background clutter we proceed in two
stages. In the first stage, we stochastically sample from the distribution PG(t) to produce
a target curve in the pyramid (starting at the apex and moving downwards). In the second
stage, we must sample from the likelihood function to generate the image. So if a pixel
x is on or off the target curve (which we generated in the first stage) then we sample the
intensity I(x) from the distribution Pon(I) or Poff (I) respectively.

4 Order Parameters and Performance Measures

Yuille et al [14],[15] analyzed the Geman and Jedynak model [6] to determine how the
ability to detect the target curve depended on the geometry Pg and the intensity properties
Pon.Poff . The analysis showed that the ability to detect the target curve behaves as e−KN ,



where N is the length of the curve and K is an order parameter. The larger the value of K
then the easier it is to detect the curve.

The order parameter is given by K = D(Pon||Poff )+D(PG||U)− log Q [15], where U is
the uniform distribution. If K > 0 then detecting the target curve is possible but if K < 0
then it becomes impossible to find it (informally, it becomes like looking for a needle in a
haystack).

The order parameter illustrates the trade-off between shape and intensity cues and deter-
mines which types of curves are easiest to detect by an ideal observer. The intensity cues
are quantified by D(Pon||Poff ) and the shape cues by D(PG||U). The easiest curves to
detect are those which are straight lines (i.e. D(PG||U) takes its largest possible value).
The hardest curves to detect are those for which the geometry is most random. The stronger
the intensity cues (i.e. the bigger D(Pon||Poff )) then, of course, the easier the detection
becomes.

So when comparing human performance to ideal observers we have to take into account
that some types of curves are inherent easier to detect (i.e. thay have larger K). Human
observers are good at detecting straight line curves but so are ideal obervers. We need
performance measures to quantify the relative effectiveness of human and ideal observers.
Otherwise, we will not be able to conclude that human observers are biased towards partic-
ular curve shapes (such as those occuring in natural images).

We now define two performance measures to quantify the relative effectivenes of human
and ideal observers. Our first measure is based on the hypothesis that human observers
have an “effective order parameter”. In other words, their performance on the target curve
tracking task behaves like e−NKH where KH is an effective order parameter which differ-
ence from the true order parameter K might reflect a human bias towards straight lines or
ecological shape priors. We estimate the effective order parameters by fixing PG, Poff and
adjusting Pon until the observers achieve a fixed performance level of at most 5 errors on
a path of length 32. This gives distributions P I

on, P H
on for the ideal and human observers

respectively. Then we set KH = K−D(P H
on||Poff )+D(P I

on||Poff ), where P H
on, P I

on are
the distributions used by the human and the ideal (respectively) to achieve similar perfor-
mance.

Our first performance measure is the difference ∆K = D(P H
on||Poff ) − D(P I

on||Poff )
between the effective and the true order parameters.

But order parameter analysis should be regarded with caution for the curve detection task
used in our experiments. The experimental criterion that the target path be found with 5
or less errors, see section (5), was not included in the theoretical analysis [14],[15]. Also
some small corrections need to be made to the order parameters due to the nature of the
rectangular grid, see [15] for computer calculations of the size of these corrections. These
two effects – the error criterion and the grid correction – means that the order parameters
are only approximate for these experimental conditions.

This motivates a second performance measure where we calculate the value of the posterior
probability (proportional to the exponential of r in equation (1)) for the curve detected by
the human and the ideal observer (for identical distributions PG, Pon, Poff ). We measure
the logarithm of the ratio of these values. (A theoretical relationship can be shown between
these two measures).

5 Experimental Results on Rectangular Grid

To assess human performance on the road tracking task, we first had a set of 7 observers find
the target curve in a tree defined by a rectangular grid figure (3)A. The observer tracked the
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Figure 3: A. Rectangular Grid Stimulus (Left), Example Path: Ideal (Center), Example Path: Human
(Right). B & C. Hexagonal Grid Stimulus (Left), Example Path: Ideal (Center), Example Path: Hu-
man (Right). Panel C shows an example of a path with higher order constraints to prevent “clumping”.
There were a number of other differences between the rectangular and hexagonal grid psychophysics,
including rectangle samples were slightly smaller than the hexgaons, and feedback was presented to
the observers without (rectangular) or with background (hexagonal), and the lowest p(straight) was
0.0 for rectangular and0.1 for hexagonal grids.

contour by starting at the far left corner and making a series of 32 key presses that moved
the observer’s tracked contour either left, right, or straight at each key press. Each contour
estimate was scored by counting the number of positions the observer’s contour was off the
true path. Each observer had a training period in which the observer was shown examples
of contours produced from the four different geometry distributions and practiced tracing
in noise.

During an experimental session, the geometry distribution was fixed at one the four possi-
ble values and observers were told which geometry distribution was being used to generate
the contours. The parameter λon of Pon was varied using an adaptive procedure until the
human observer managed to repeatedly detect the target curve with at most five misclassi-
fied pixels. This gave a threshold of λon − λoff for each probability distribution defined
by P (straight). This threshold could be compared to that of the Ideal Observer (obtained
by using dynamic programming to estimate the ideal, also allowing for up to five errors).
The process was repeated several times for the four geometry distribution conditions.

The thresholds for 7 observers and the ideal observer are shown in figure 4. These thresh-
olds can be used to calculate our first performance measure (∆K) and determine how
effectively observers are using the available image information at each P (straight).

The results are illustrated in figure (4)B where the human data was averaged over seven
subjects. They show that humans perform best for curves with P (straight) = 0.66 which
is closest to the natural priors, see figure (1). Conversely, ∆K is biggest for the curves with
P (straight) = 0.0, which is the condition that differs most from the natural statistics.

We next compute our second performance measure (for which Pon, Poff , PG are the same
for the ideal and the human observer). The average difference of this performance measure
for the each geometry distribution is an alternative way how well observers are using the in-
tensity information as a function of geometry, with a zero difference indicating optimal use
of the information. The results are shown in figure (4)C. Notice that the best performance
is achieved with P (straight) = 0.9.

Observe that the two performance measures give different answers for this experiment.
We conclude that our results are consistent either with a bias to ecological statistics or to
straight lines. But the rectangular lattice

6 Experiments on Hexagonal Lattices

In these experiments we used a hexagonal lattice because, for the human observers, the
contrast at the edges corresponding to a left, straight, or right move is the same (in contrast
to the rectangular grid, in which left and right moves only share a corner). We also use the
same values of Pon, Poff , P (straight) for the humans and the ideal.



Figure 4: A-C. Psychophysical results on rectangular grid. A. Threshold λon−λoff plotted against
P (straight). The top seven curves are the results of the seven subjects. The bottom curve is for
the ideal observer. B. The difference between human and ideal K order parameters. C. The average
reward difference between ideal and human observers. D-I shows psychophyscial results on a hexag-
onal grid. D-F are for the Clumping condition, and G-I for the No Clumping condition for which
high order statistics prevented sharp turns that result in “clumps”.

We performed experiments on the hexagonal lattice under four different probabilities for
the geometry. These were specified by P (straight) = 0.10, 0.33, 0.66, 0.90 (in other
words, the straightest curves will be sampled when P (straight) = 0.90 and the least
straight from P (straight) = 0.10). For reasons described previously, we did the experi-
ment in two conditions. (1) allowing zig-zags “Clumping”, (2) forbidding zig-zags “No-
Clumping”. We show examples of the stimuli, the ideal results (indicated by dotted path),
and the human results (indicated by dotted path) for the Clumping amd No-Clumping cases
in figure (4B & C), respectively.

The threshold SNR results for Clumping and No Clumping are summarized in figures (4D
& G. The average ∆K = Khuman − Kideal results for Clumping and No Clumping are
summarized in figure (4E & H). The average reward difference, ∆r = rideal − rhuman,
results for Clumping and No Clumping are summarized in figure (4F & I).

Both performance measures give consistent results for the Clumping data suggesting that
humans are best when detecting the straightest lines (P (straight) = 0.9). But the situation
is more complicated for the No Clumping case where human observers show preferences
for P (straight) = 0.9 or P (straight) = 0.66.



7 Summary and Conclusions

The results of our experiments suggest that humans are most effective at detecting curves
which are straight or which obey ecological statistics. But further experiments are needed
to clarify this. Our two performance measures were not always consistent, particularly for
the rectangular grid (we are analyzing this discrepency theoretically). The first measure
suggested a bias towards ecological statistics on the rectangular grid and for No Clumping
stimuli on the hexagonal grid. The second measure showed a bias towards curves with
P (straight) = 0.9 on the rectangular and hexagonal grids.

To our knowledge, this is the first experiment which tests the performance of human ob-
servers for detecting target curves by comparison with that of an ideal observer with am-
biguous intensity data. Our novel experimental design and stimuli may cause artifacts due
to the rectangular and hexagonal grids. Further experiments may need to ”quantize” curves
more carefully and reduce the effect of the grids.

Further experiments performed on a larger number of subjects may be able to isolated
more precisely the strategy that human observers employ. Do they, for example, make use
of a specific geometry prior based on empirical edge statistics [16], [10]. If so, this might
account for the bias towards straigthness and natural priors observed in the experiments
reported here.
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