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Abstract

Human saccade is a dynamic process of information pur-
suit. Based on the principle of information maximization,
we propose a computational model to simulate human sac-
cadic scanpaths on natural images. The model integrates
three related factors as driven forces to guide eye move-
ments sequentially — reference sensory responses, fovea-
periphery resolution discrepancy, and visual working mem-
ory. For each eye movement, we compute three multi-band
filter response maps as a coherent representation for the
three factors. The three filter response maps are combined
into multi-band residual filter response maps, on which we
compute residual perceptual information (RPI) at each lo-
cation. The RPI map is a dynamic saliency map varying
along with eye movements. The next fixation is selected
as the location with the maximal RPI value. On a nat-
ural image dataset, we compare the saccadic scanpaths
generated by the proposed model and several other visual
saliency-based models against human eye movement data.
Experimental results demonstrate that the proposed model
achieves the best prediction accuracy on both static fixation
locations and dynamic scanpaths.

1. Introduction

In human visual system, neurons representing different

retinal eccentricities have different spatial frequency tuning.

Foveal neurons have a smaller average receptive field size

and are better tuned to high spatial frequencies. They are ca-

pable of processing visual information at very high spatial

resolution. On the other hand, cortical neurons representing

peripheral vision have larger receptive fields and are more

sensitive to the lower range of spatial frequencies. They are

capable of processing information at low spatial resolution

[8]. So the information from a foveal image at one fixation

is very limited. Human saccadic eye movement is an impor-

tant mechanism to compensate for the loss of visual acuity

in the periphery and to actively pursue information around

the scene. In a highly dynamic and cluttered world, to ac-

quire visual information efficiently and rapidly, it is impor-

tant for our brain to decide not only where we should look

at, but also the sequence of fixations. Indeed, both of them

are essential for us to understand human saccadic behavior.

In the paper, we propose a computational model to sim-

ulate human saccadic scanpaths on natural images without

a particular task. Investigating this topic is not only helpful

in understanding the computational aspects of visual per-

ception, but also beneficial to many important applications

such as image and video compression, object detection, and

web-page design.

Proposed method The proposed saccade model in-

tegrates three factors that drives human attention reflected

by eye movements: reference sensory responses, fovea-

periphery resolution discrepancy, and visual working mem-

ory.

Fig. 1 shows the framework of the proposed model. The

three modules highlighted with a grey-blue background are

the key factors. (i) The reference sensory responses of an

image are multi-band filter responses of sparse coding func-

tions extracted from the stimuli. They are considered as a

representation of the raw input signal and serve as the ref-

erence information in the proposed system. Neurophysio-

logical evidence shows that the receptive fields of neurons

in the primary visual cortex (V1) are similar to sparse codes

learned from natural images [21]. The reference sensory

responses simulate neuronal responses of the primary vi-

sual cortex to an image at a uniform high resolution. (ii)

The fovea-periphery resolution discrepancy provides de-

tailed information around a fixation location, but coarse in-

formation in periphery. This information discrepancy di-

rectly leads to sequential fixation transitions. In Fig. 1, a

foveal image at fixation Qt is generated and multi-band fil-
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Figure 1. The proposed framework.

ter response maps of this foveal image are extracted. (iii)

Visual working memory retains perceptual information for

a certain period of time and inhibits immediate return of at-

tention. We also represent the content in working memory

with multi-band filter response maps. To simulate the decay

of working memory, we multiply the filter response maps in

the memory with a forgetting factor ε (0 ≤ ε ≤ 1). We up-

date visual working memory by taking the maximal filter

response values of the foveal image filter responses and the

current decayed filter responses in the memory at each loca-

tion. The resulted filter responses encode the so far obtained

perceptual information of the scene in brain.

Then, by subtracting the updated filter response maps in

the working memory from the reference sensory responses,

we obtain multi-band residual filter response maps. This

simulates the dynamic interaction among the three factors

along with eye movements. Consequently, we compute the

Site Entropy Rate [26] on residual filter response maps to

obtain a residual perceptual information (RPI) map. The

resulted RPI map represents the spatial distribution of the

discrepancy between the amount of information stored in

brain and that contained in input stimulus. In order to pur-

sue the maximal amount of “new” information of the scene

and reduce this perceptual discrepancy, according to the in-

formation maximization principle, we choose the spot of the

maximal SER value as the next fixation Qt+1, and then start

the next iteration.

At each eye movement, the three multi-band filter re-
sponse maps are computed as a coherent representation for

the three factors. Based on this representation and the strate-

gical implementation of the framework, we provide experi-

mental results to demonstrate the model’s capability in sim-

ulating human saccadic scanpaths.

1.1. Related work

In the literature, there are two categories of research re-

lated to modeling saccadic behavior in terms of generating

scanpaths. The first category focuses on computing static

visual saliency maps which describe the importance of each

image location by image feature contrast or image feature

rarity. Itti et al. [18] propose a biologically-plausible visual

saliency model based on the center-surround contrast mech-

anism. By arguing that [18]’s linear model of the similarity

measure on color, intensity, and orientation is inconsistent

with the properties of higher level human judgement, Gao et
al. [10] propose a discriminant center-surround hypothesis

based on mutual information. It treats saliency detection

as a classification problem, and obtains an optimal solu-

tion from the perspective of decision theory. Considering

that information pursuit is the driving force behind atten-

tive sampling, Bruce et al. [5] adopt the self-information
of sparse features as a saliency measure. Harel et al. [15]

propose a graph-based visual saliency model which com-

putes the equilibrium distribution of a Markov chain on a

fully-connected graph as a saliency measure. Gopalakrish-

nan et al. [13] extend [15]’s work and apply it in salient

region detection. By analyzing the log-spectrum of natural

images, Hou et al. [17] compute the spectral residual of an

input image and transform the spectral residual to spatial

domain to obtain the saliency map. Achanta et al. [1] pro-

pose a frequency-tuned method to detect salient regions. Itti

et al. [20] propose a concept of Bayesian surprise mecha-

nism to interpret visual attention. The “surprise” is defined

as the difference between the posterior and prior distribu-

tions of beliefs of an observer over the hypotheses about

the world. These models use static information to predict

eye fixations, but ignore many important dynamic proper-
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ties in human saccadic behaviors such as fixation order. The

work of [18] adopts the principles of winner-take-all and

inhibition of return to generate a scanpath out of a static

saliency map. However, By comparing scanpaths generated

by [18]’s model with human eye movement data, we find

that this kind of static saliency model cannot predict fixa-

tion order well as shown in Section 3, which suggests that

the dynamic properties should be taken into account to sim-

ulate human saccade.

The second category focuses on dynamic visual saliency

maps during human saccade from the view of information

theory. Compared with the static visual salience research,

the dynamic aspect of human saccade is much less stud-

ied. Lee and Yu [19] propose an information maximization

framework to explain saccadic eye movements, however, it

is lack of experiments to justify their model. Inspired by the

framework, Renninger et al. [22] simulate human saccade

on novel shape silhouettes with both global and local infor-

mation. Nevertheless, it is not trivial to extend this model

to natural images.

There are some other studies about the effective factors

of eye movement. Harding et al. [14] manipulate low-level

image features such as luminance and chromaticity to mea-

sure the effects of these changes on human scanpaths, and

compare these effects to [18]’s predicted results. Foulsham

et al. [9] find that accumulation of scanpaths facilitates fixa-

tion prediction, and scanpaths can be explained by bottom-

up guidance. Both of the work find that scanpaths generated

by [18]’s strategy based on static visual saliency do not pre-

dict real human saccadic behavior well. Bahill et al. [2]

discover that most naturally occurring human saccades are

within 15 degrees of visual angle. This is a fact exploited in

our model.

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce the details of our model. The experi-

mental results and a new evaluation method of fixation order

and fixation location are presented in Section 3. Finally, we

discuss some issues of the model and conclude the paper in

Section 4.

2. Our Approach

In this section, we introduce each component of the pro-

posed model (shown in Fig. 1) in details and elaborate the

information pursuit strategy of eye movements based on the

residual perceptual information measure.

2.1. Coherent representation of three factors

We propose multi-band filter responses as a coherent rep-

resentation for the three factors. The integration of them

at each eye movement produces a dynamic saliency map,

which decides the next fixation.

2.1.1 Sparse coding filters

Single-unit recording evidence shows that when a natural

image is presented, it only activates a small number of V1

neurons [3]. To simulate this sparse property of simple cells

in the primary visual cortex, the sparse coding theory is pro-

posed to extract the intrinsic local structure of natural im-

ages for efficient coding [21].

In this paper, we use sparse coding filter functions to

compute three multi-band filter response maps for the refer-

ence sensory responses, fovea-periphery resolution discrep-

ancy, and visual working memory. Specifically, Indepen-

dent Component Analysis (ICA) [16] is adopted to learn a

set of 192 color sparse filter functions from 120,000 im-

age patches of size 8 × 8 × 3 pixels, which are randomly

extracted from 1500 natural color images. Then, each filter

convolves an image and generates a sub-band filter response

map. 64 samples of learned color sparse bases are shown in

Fig. 2.

Figure 2. 64 learned color sparse coding bases.

2.1.2 Foveal imaging

To simulate the foveal imaging of human eyes, we adopt

Geisler and Perry’s multi-resolution pyramid method to cre-

ate foveal images [12]. First, the spatial resolution (acuity)

at each pixel relative to the current fixation is computed by

a function of eccentricity [11]. Second, we build a multi-

resolution pyramid of the original image, typically of 6 or

7 levels. Third, the desired spatial resolution at each pixel

in the foveal image is computed as a weighted sum of cor-

responding pixel values in different layers of the pyramid.

An original image and one of its foveal images are shown

in Fig. 3 (a) and (b).

(a) (b)

Figure 3. An example of foveal imaging. (a) Original image (b)

Foveal image at the fixation labeled by a red cross.
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2.1.3 Visual working memory

Once an image location is visited by the fovea, informa-

tion at that fixation is acquired. Visual working memory

integrates the information across previous eye movements,

meanwhile, it loses the stored information at a certain rate.

This forgetting property will steer eyes moving back to pre-

viously visited salient spots when the “residual informa-

tion” becomes trivial, in other words, the information at the

previous fixations has been forgotten. In the following we

explain the mechanism of updating the filter responses in

the visual working memory.

Simulating the forgetting properties. In our model, we

multiply the current filter responses in working memory

with a constant forgetting factor ε (0 ≤ ε ≤ 1) to simu-

late its forgetting property. If ε = 1, no forgetting effect;

if ε = 0, it is memoryless. In Section 3.4, we compare

simulated scanpaths under different values of ε. The result

shows that the forgetting property is an important factor to

be modeled in simulating human saccades.

Updating visual working memory. Visual working

memory is the place where perceptual information from

current fixation and previous ones is dynamically updated.

In our model, the updating process of working memory

is implemented as taking the maximal filter response values

between the foveal image filter responses and the current

decayed filter responses in working memory at each loca-

tion. A Max operation is to simulate the transient activa-

tion in the caudal superior frontal sulcus and posterior pari-

etal cortex when updating the attentional focus [4]. This is

another key process that happens in working memory. To

be specific, let fv
k (x, y, t) and fw

k (x, y, t) represent the k-th

sub-band filter responses of a foveal image and visual work-

ing memory at time t and position (x, y) respectively. Then

the updating process is as follows:

fw
k (x, y, t) ← max (fv

k (x, y, t), ε · fw
k (x, y, t− 1)). (1)

Computing residual filter response maps. The updated

filter response maps in visual working memory will interact

with the reference sensory responses to predict the next fix-

ation (see Fig. 1). Psychological evidence shows that people

will shift attention when they move fixation to another point

[7]. Also it is known that attention shift-away is function-

ally equivalent to reducing stimulus strength [6]. Therefore

in our model, we subtract the updated filter responses in vi-

sual working memory from the reference sensory responses

to simulate the reduction of the stimulus strength. The

residual filter responses are computed as rk = |fo
k − fw

k |,
where fo

k represents the k-th sub-band of the reference sen-

sory response map.

2.2. Measuring residual perceptual information

From the view of information theory, a residual filter re-

sponse map contains the perceptual discrepancy between

the information contained in an image and that stored in

brain after a series of fixations. This discrepancy is what

we aim to pursue in the following eye movements.

In our model, the residual perceptual information is mea-

sured by the Site Entropy Rate (SER) [26] computed from

the residual filter response maps. The Site Entropy Rate
model adopts a fully-connected graph representation for the

filter response maps to simulate the cortical neuron connec-

tivity. Random walks are deployed on the graph to model

the information transmission between neurons of the net-

work. The site entropy rate of the random walk is proposed

to measure the average information transmitted from a node

to all the others. In this way, each sub-band filter response

map produces a SER map. By summing up all the SER

maps, the total exchanged information (measured by SER

value) at each location i can be obtained as:

Si =
∑

k

SERki = −
∑

k

(πki

∑

j

Pkij logPkij) (2)

where πki is the stationary probability at location i for the

k-th filter response map, Pkij is the transition probability of

a random walk from location i to location j on the k-th filter

response map. According to [26], the larger the SER value

at a location is, the more salient the location is. Please refer

to [26] for more details about the SER model.

There are two major reasons we adopt the SER to

measure residual perceptual information. First, the SER

model can explain the perceptual mechanism of the center-

surround saliency whereas the residual filter response map

cannot. Moreover, the residual filter response map is sen-

sitive to noise, e.g., salt-and-pepper type noise, and high

frequency texture regions. Second, the residual perceptual

information measure derived from SER is from the infor-

mation theoretic viewpoint. This coincides with our model

assumption, i.e. human saccade is a dynamic process of

information pursuit.

2.3. Saccadic amplitude

Using our eye movement data, we plot the distribution

of saccadic amplitudes in Fig. 4. It is found that more

than 90% saccade amplitudes are within 20◦ of visual an-

gle around the current fixation point. Therefore, in the pro-

posed model, we adopt the following randomized strategy

to select the next fixation Qt+1 contingent on current fixa-

tion Qt. First, a window of size Z × Z pixles centered at

current fixation point Qt is selected, where the value of Z/2
(about 400 pixels) corresponds to 20◦ of visual angle under

the eye tracking system. Then the locations where the max-

imal SER values inside and outside the window are selected
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Figure 4. The distribution of saccade amplitudes.

as candidates for Qt+1. Next, we sample Qt+1 from these

candidates according to the probability p(z ≤ Z/2), which

is obtained from the statistics of saccade amplitudes shown

in Fig. 4.

At the new fixation Qt+1, we generate a new foveal im-

age and start the next iteration.

3. Experimental Results

To test the performance of the proposed model, we

collect human eye movement data from a natural image

dataset, and compare scanpaths generated by our model and

two other approaches against the eye movement data in two

aspects. One is the dynamic aspect of saccades such as fix-

ation orders. The other is the static property of scanpaths

such as fixation spatial densities.

3.1. Dataset and eye movement data collection

We randomly collected a dataset of 20 color images from

the Internet including natural scenes, street and buildings,

and indoor images, etc. We collected eye movement data

from 24 subjects with this dataset using a high-speed SMI

eye-tracker with a 500 Hz sampling rate. Subjects were po-

sitioned 0.53m away from a 21-inch CRT monitor. The im-

ages were presented in a random order, each was displayed

for 3 seconds followed by a blank screen for 1 second. A

cross was placed at the center of the blank screen so as to

engage the first fixation at the center of the images. The

subjects were given no particular instruction except asking

them to observe the images.

3.2. Evaluation of fixation order

There is a lack of literature on computational models of

the dynamic aspect of visual attention. As mentioned above,

Lee and Yu’s work [19] is rather a conceptual framework

without adequate implementation solution and experimen-

tal results; Renninger et al. [22] simulate scanpaths on novel

shapes, whereas, it is not trivial to adapt their method to nat-

ural images. Nonetheless, Itti et al. in [18] propose a scan-

path generation method from static saliency maps based on

Figure 5. Comparison of scanpaths generated by our model and

the other two methods. The rows from top to bottom show the

scanpaths simulated by [18]’s method, [26]’s method, our method,

and example scanpaths from eye tracking data, respectively. The

blue dots mark the starting fixation points.

winner-takes-all (WTA) and inhibition-of-return (IoR) reg-

ulations. To our knowledge, this is the most referred method

in literature. Hence, we compare our model with Itti et
al.’s approach. Moreover, to demonstrate that the advan-

tage of the proposed model does come from incorporating

the dynamic process of information pursuit, we substitute

the static saliency computation module in [18] with an up-

to-date state-of-the-art static saliency model [26], but still

using the WTA and IoR regulations in [18], then we com-

pare the generated scanpaths by our method and by the up-

dated model of [18].

To be consistent with the setting of the eye movement ex-

periments, our model places the initial fixation at the image

center and then generates a series of fixations. When simu-

lating eye movements, first we decide a length of the scan-

path for an image. The length is sampled from the statistics

of eye movement data on that image (usually 8 ∼ 10 fix-

ations). Then, we generate three fixation sequences of that

length using the following three models, our model, Itti et
al.’s model [18] and its updated model using [26], respec-

tively. Repeating this on the dataset, we obtain three groups

of scanpaths. Subsequently, we compare the three groups

against human scanpaths using the evaluation method intro-

duced below. As shown in Fig. 5, the simulated scanpaths

by our model are more similar to human saccades than the

other two methods.
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(a)

(b)

Figure 6. Comparison results between our model, [18] and [26]

using Hausdorff distance (a) and mean minimal distance (b) at dif-

ferent scanpath length k.

3.2.1 Distance of scanpaths

In order to quantitatively compare the stochastic and dy-

namic scanpaths of varied lengths, we propose to em-

ploy time-delay embedding, which has been used widely

in the study of dynamical systems [23]. Specifically, we

divide scanpaths into pieces of length k, e.g. Ck
m(t) =

(cm(t), · · · cm(t + k − 1)) denotes a k-dimensional time-

delay embedding vector, starting at the t’th fixation gen-

erated by a model m. By varying the initial point t,
the collection of all such k-dimensional vectors gives rise

to the model space X = {Ck
m(t)}t ⊆ R

k. Similarly

Y = {Ck
h(τ)}τ denotes all the k-dimensional vectors in

eye movement data of the same image. In particular when

k = 2, these vectors are discrete approximation of vector

fields. Comparison between such point cloud data X and Y
in R

k will reflect the dynamical similarities between models

and human.

For each model-generated k-dimensional vector x =
Ck

m(t) ∈ X , define its normalized distance to the human

scanpaths as dk(x, Y ) = minτ{‖x−Ck
h(τ)‖2}/k. In other

words, we search among all the length k scanpath sections

of human eye tracking data on the image, dk(x, Y ) is the

one with the minimum distance to the given model vector

x. The smaller such a distance, the closer/more similar to

human scanpath, thus a better prediction.

We use two distance measures to evaluate the scanpaths

generated by a model w.r.t. human data: (i) Hausdorff dis-

(a) (b) (c) (d)

Figure 7. Comparison results about fixation density maps between

our model and two other methods. The rows from top to bot-

tom are: input images, the saliency maps by [18]’s model, [26]’s

model, our model, and human fixation density maps, respectively.

tance (H-Distance) computes the maximal value of all the

minimal distances between two sets of scanpaths, which is

defined as

dkH = max
t

{min
τ

{‖Ck
m(t)− Ck

h(τ)‖2}}/k (3)

= max
t

{dk(Ck
m(t), Y )}. (4)

(ii) The mean minimal distance (MM-Distance) , as its

name tells, is defined as dkM = Et[dk(C
k
m(t), Y )].

In the evaluation experiments, our model parameters are

set as follows: the forgetting factor ε = 0.7, the window

size Z = 800 pixels, the half-resolution of foveal imag-

ing is 2.3◦. Fig. 6 (a) and (b) show comparison results be-

tween our model and the other two methods in terms of the

Hausdorff distances and the mean minimal distances, re-

spectively. We compare scanpaths at different lengths k = 2
to 5. From the comparison results, we can see that our

model performs better in simulating the dynamics of sac-

cadic scanpaths. When k > 5, the distance measures in-

crease with k due to the stochastic property of human sac-

cadic behavior, whereas, the ranking of the compared meth-

ods remains the same. To study the individual difference in

scanpaths is one of our future tasks.

3.3. Evaluation of fixation distribution

We compare our model with those introduced in [26] and

[18] using two types of measures described in [5]: (1) the

static saliency map of each image is computed as a fixa-

tion density map using a kernel-based density estimation.
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Table 1. ROC area comparison

Itti et al. [18] Wang et al. [26] Our model

ROC area 0.6706 0.7081 0.7183

Fig. 7 (a∼d) shows the comparison results. (2) We also use

ROC curves and ROC areas to compare these three models

in Fig. 8 and Tab. 1. Both the ROC curves and ROC areas

are generated by classifying the locations in a saliency map

into fixations and non-fixations with varying quantization

thresholds. The larger is the ROC area, the better prediction

does the model make. From both figures and the table, it

can be seen that our model predicts human fixations more

accurately than [18], and comparable to [26].

3.4. Assessment of the forgetting factor

To assess modeling the decay property of working mem-

ory, we generate a series of scanpaths on each image of the

dataset by tuning the forgetting factor ε from 0 (memory-

less) to 1 (remember every detail) in our model. Fig. 9

shows the average mean minimal distances between the

simulated scanpaths and eye tracking data with different ε
over all the images of the dataset. Note that the results us-

ing Hausdorff distance are similar, hence, omitted. To select

the optimal forgetting factor, we also compute the average

distance of different saccade length k at each ε. The plotted

curve in Fig. 10 clearly shows that when ε = 0.7, the model

predicts the scanpaths best.

During the experiment, we observe two interesting phe-

nomena. (i) When ε is small, e.g. ε = 0 for an extreme

case, the model quickly forgets just acquired information in

working memory. As a result, the simulated scanpath will

be trapped into the oscillation in between two or three fixa-

tions. In other words, in this case, there is no inhibition of

return. This obviously deviates from human behavior. (ii)

When ε is large, e.g. ε = 1 for an extreme case, the model

retains most of the acquired information from the previous

fixations in working memory. Consequently, the simulated

fixations seldom returns to the visited locations. This is also

not true compared to the human data. Via generating scan-

Figure 10. The average distance of different scanpath length k at

each ε. ε = 0.7 is selected as model parameter.

paths under different forgetting factor and comparing them

with eye tracking data, the proposed model finds the best

parameter ε = 0.7 to simulate human saccadic behavior

(with fixation revisits). From both psychological evidence

and the comparison results to other models, we argue that

considering the forgetting effect of visual working memory

plays a key role in simulating eye movements. This is one of

the key differences between the proposed model and those

proposed in [19] and [22].

4. Conclusion, Discussion and Future Work
In the paper, we propose a computational model to sim-

ulate human saccadic scanpaths on natural images without

a specific task based on the principle of information max-

imization. The proposed model identifies and integrates

three important factors as the driving forces to guide eye

movements based on a coherent multi-band sparse code fil-

ter response representation. The computational model em-

bodies several well known psychological phenomena, such

as center-surround saliency, inhibition of return, fixation re-

visit, algorithmic implementation of information transmis-

sion on the neural network and the forgetting effect of short

term working memory, etc. We propose a new evaluation

method to compare fixation order of scanpaths. Extensive

experiments show the advantage of the proposed model in

predicting human saccadic scanpaths.

This model is inspired by some biological evidences, but

not aims to copy the exact mechanisms of visual processing.

For examples, although people have different views on the

accessibility of raw signal [25], the proposed model adopts

the reference sensory responses as a reference information

or knowledge to compare with the content in visual working

memory and consequently guide eye movements. Also note

that sparse coding may not be universally acknowledged

due to its limitation in accounting for the high-order statis-

tics of natural images, but many work still use it to represent

an image because it is consistent with a lot of experimental

evidence (see [24]).
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Figure 9. Average mean minimal distances between the simulated scanpaths and eye tracking data with different ε over the image dataset.

In the literature, some work uses edit distance to mea-

sure the difference between scanpaths [9]. We do not adopt

this measure for two reasons: (i) The method introduces

more free parameters, e.g. the cost for every operator. It is

rather subjective to tune these parameters to make the dis-

tance measure reasonable. (ii) We observe that although

there exist shared sections among scanpaths, the stochastic

nature of saccade introduces much variation among scan-

paths. This makes the design of operations and the operator

cost tuning particular hard.

In the future, we will extend the current model to ex-

plain individual difference in scanpaths and propose some

new evaluation criteria for such extension. Moreover, the

fixation duration is another important attribute of saccadic

behavior. It will also be considered in our future work.
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