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Abstract With intensive training, human can achieve impressive behavioral improvement on various perceptual tasks.
This phenomenon, termed perceptual learning, has long been considered as a hallmark of the plasticity of sensory
neural system. Not surprisingly, high-level vision, such as object perception, can also be improved by perceptual
learning. Here we review recent psychophysical, electrophysiological, and neuroimaging studies investigating the effects
of training on object selective cortex, such as monkey inferior temporal cortex and human lateral occipital area.
Evidences show that learning leads to an increase in object selectivity at the single neuron level and/or the neuronal
population level. These findings indicate that high-level visual cortex in humans is highly plastic and visual experience
can strongly shape neural functions of these areas. At the end of the review, we discuss several important future
directions in this area.
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Introduction

Instead of a hard-wired system, our brain is plastic and is
adapting to the dynamic world constantly. Such neural
plasticity is prominent when the brain is immature (Hubel
and Wiesel, 1970) or damaged (Kaas et al., 1990). However,
even healthy adult brain can show impressive plasticity under
certain circumstances. Some changes are short-lived for just a
few seconds or minutes, such as neural suppression after
visual adaptation (Blakemore and Campbell, 1969). One of
the most stable and long-term changes is perceptual learning,
which results from intensive training on a perceptual task
(Gilbert et al., 2001). Training is shown to improve various
visual performances, ranging from discriminating elementary
visual features such as orientation (Schoups et al., 1995),
contrast (Yu et al., 2004), and motion direction (Ball and
Sekuler, 1987), to identifying shapes (Sigman and Gilbert,
2000) and objects (Furmanski and Engel, 2000). Such
improvements from perceptual learning usually last for

months, even years (Karni and Sagi, 1993).
The training-induced improvement on visual abilities is

considered to be closely related to plasticity in visual cortical
areas. A significant characteristic of perceptual learning is its
specificity to the trained attribute, the trained position, and
even the eye of origin. For example, training with an
orientation discrimination task leads to a dramatic improve-
ment in the discriminating ability around the trained
orientation (Schoups et al., 2001). The specificities of
perceptual learning effects have usually been taken as an
implication of modification in the primary visual cortex (V1)
where neurons are tuned for low-level features such as
orientation, spatial frequency, retinal location etc.

Studies have been conducted to identify the neural
correlates of perceptual learning. Several of them indeed
found changes in neuronal tuning or cortical response
magnitude in the primary visual cortex. For example, training
monkeys to discriminate grating orientation leads to a
sharpening of the tuning curve of V1 neurons (Schoups et
al., 2001). In human imaging studies, it has been shown that
training with a texture discrimination task or an orientation
detection task leads to an enhancement in V1 response
(Schwartz et al., 2002; Furmanski et al., 2004; Yotsumoto et
al., 2008; Bao et al., 2010). These findings support that
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training changes the coding of the trained attributes in the
task-relevant sensory cortex.

Compared to learning of elementary visual features, object
learning is far less investigated. Yet the ability to identify
visual objects in a crowded environment is of greater
biological significance for surviving. Could our ability to
recognize objects be improved by training? A lot of studies
have shown that training could lead to a better performance
on recognizing complex stimuli, ranging from computer
generated novel shapes (Op de Beeck et al., 2003), to
common objects (Gauthier and Tarr, 1997; Furmanski and
Engel, 2000), to human faces (Gold et al., 1999; Goldstone et
al., 2001; Hussain et al., 2008). These improvements indicate
that the neural processing of object information could be
modified. It is known that visual objects, as well as complex
shapes, are encoded by neurons in monkey inferotemporal
(IT) cortex (Gross, 1992) and its human homolog, lateral
occipital (LO) area. Neural activity in these cortical areas has
a close relationship with object recognition performance
(Grill-Spector et al., 2000). Because object perceptual
learning shows tolerance to size and position changes of
trained stimuli which are the characteristics of IT neurons
(Gross, 1992; Grill-Spector et al., 1999), it thus has been
suggested that the most plausible neural locus of object
perceptual learning is IT or LO.

In the past decades, a large number of psychophysical and
neurophysiological explorations have been made to investi-
gate the neural mechanisms underlying object perceptual
learning. Here we review psychophysical evidence on the
characteristics of object perceptual learning, as well as
evidence on the neural substrates of the learning. A wide
range of forms of object learning are included, such as
discrimination, categorization, matching, as well as passive
viewing. All these kinds of learning usually exhibit typical
characteristics of perceptual learning, such as specificity and
persistency. As the neural locus of object learning has been
speculated to be object selective cortex such as monkey IT or
human lateral occipital area, we mainly review evidence
showing learning related changes in these areas. Since some
researchers proposed that learning may take place at a more
central site which is related to attention and decision making
(Mollon and Danilova, 1996), in this review, we pay special
attention to evidence supporting or against the critical role of
sensory cortex plasticity in object perceptual learning.

Psychophysical evidence: specificity and
generalization in object perceptual learning

Furmanski and Engel (2000) studied the behavioral con-
sequences of object learning. Subjects were trained for five
days with an object recognition task. In each trial, a gray-scale
object image was presented briefly and followed by a mask
image (Fig. 1A). The object exposure time was controlled by
a staircase procedure and subjects performed a naming task.

An adaptive procedure was adopted to estimate the threshold
exposure time for object recognition. Training gradually
reduced the threshold exposure time, indicating a facilitated
recognition performance. Importantly, this facilitation effect
was specific to the trained objects and persisted after a long
period of break (Fig. 1B), which is typical to perceptual
learning. Furthermore, this learning effect transferred nearly
completely to stimuli with a different size (Fig. 1C). These
results agree well with the proposal that learning modifies
neurons in object selective cortex whose response shows a
large tolerance to image size variance.

A more detailed study concerning face view discrimination
learning systematically examined conditions under which
learning could transfer or not (Bi et al., 2010). A complete
transfer of learning effect was found between trained and test
stimuli that were different in size, local information, identity
or retinal position (Fig. 2A–2D). However, when the
configural face information was disrupted by inverting the
face or when the test face was replaced with a paperclip-like
object, the learning effect could no longer transfer (Fig. 2E–
2F). These results provided strong evidence that face view
learning takes place at cortical areas containing neurons
sensitive to face view and tolerant to size, local information,
position and identity changes. Such neurons were found in
monkey IT area (Desimone et al., 1984), as well as superior
temporal sulcus (STS) area (Perrett et al., 1985; De Souza et
al., 2005). Human imaging studies also revealed that face
view information is processed in higher level visual cortex
including fusiform face area (FFA), occipital face area (OFA)
and STS (Andrews and Ewbank, 2004; Fang et al., 2007).
Therefore, the psychophysical results strongly suggest that
learning modified neuronal function in these areas.

The high specificity of learning effect to the trained objects
and the substantial transfer to stimuli containing only low-
level property changes indicate higher level object selective
areas as the neural locus of object learning. These findings
thus suggest that, to reveal the neural mechanisms of object
perceptual learning, it is reasonable to focus on the neural
changes induced by object learning in object selective cortex
such as monkey IT or human LO areas.

Electrophysiological evidence

Growing evidence suggests that object learning occurs at
object selective areas. Researchers paid more attention to
these areas than low level visual areas such as V1. For this
reason, most of the electrophysiological studies concern
neuronal activity in monkey IT area. A central question is
how learning changes the representation of objects in this
area.

A straightforward idea is to examine the influence of
training on neuronal firing rate to the trained objects. For
example, Sakai and Miyashita (1994) found that training with
a form matching task could lead to a larger response to the
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trained stimuli than the untrained stimuli. However, not all the
studies are consistent with this finding. Instead, some studies
showed a decrease in firing rate (Freedman et al., 2006) or an
unchanged response (Baker et al., 2002; Cox and DiCarlo,
2008).

The discrepancy among the findings concerning neuronal
firing rate may stem from the different tasks or stimuli,
indicating that there may not be a common mechanism of
different kinds of object learning. However, different from the
studies focusing on response magnitude, many studies
consistently found that neuronal selectivity could be
enhanced after training (Baker et al., 2002; Sigala and
Logothetis, 2002; Freedman et al., 2006; Op de Beeck et al.,
2007; Cox and DiCarlo, 2008; De Baene et al., 2008;
Woloszyn and Sheinberg, 2012). The enhancement of
selectivity was observed across different training tasks and
stimuli. Thus, it is likely that selectivity change is a common
and crucial neural correlate of object learning.

Selectivity is an intrinsic property of neurons in sensory
cortex. For example, neurons in IT area are selective for
complex shapes or objects. A neuron may fire intensively
when seeing an apple, but it remains silent when seeing a
pear. Selectivity refers to the difference of responses to
different stimuli. The larger the selectivity, the more sensitive
neurons are to specific stimulus attributes, which may in turn
result in a better behavioral performance. Therefore, in
addition to response change, selectivity change is also a
potential mechanism underlying perceptual learning. A
typical way to measure neuronal selectivity is to compute
the “selectivity index”. Assume a neuron responds to a set of
stimuli. This neuron fires most when stimulus A is presented,
but it fires least when stimulus B is presented. The selectivity
index of this neuron to this set of stimuli is defined as
(RA –RB)/(RA + RB), where RX means the response to
stimulus X.

Sigala and Logothetis (2002) studied how neuronal
selectivity changes in monkey temporal cortex after practi-
cing a face categorization task. A series of cartoon faces
varied in four features, including eye height, eye separation,
nose length and mouth height (Fig. 3A). Monkeys were
trained to categorize faces into two categories using the
information of two features (Fig. 3B). A selectivity index
could be computed for each of the four features (Fig. 3C). The
results showed that selectivity indices of features useful for
categorization task (diagnostic features) were significantly
larger than those not useful for categorization task (non-
diagnostic features) (Fig. 3D), indicating an enhancement in
selectivity as a result of training.

Such an enhancement in selectivity could result from either
response enhancement to preferred stimulus or response
inhibition to non-preferred stimulus, or both. This may
explain the disagreement among previous studies regarding
whether the neuronal response could be increased (Woloszyn
and Sheinberg, 2012), decreased (Freedman et al., 2006) or
unchanged (Baker et al., 2002; Cox and DiCarlo, 2008). Yet

Figure 1 Learning of object identification: specificity and
transfer. (A) Two examples of the stimuli used for training.
Objects were presented for a short period and followed by a
mask. Subjects were instructed to name the object. (B) The
threshold exposure time of objects decreased gradually with
training. Learning was specific to the trained objects and
could persist up to 20 days after training. (C) Learning
transferred nearly completely to the same objects with a
different size.
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Figure 2 Face view perceptual learning. First column denotes the stimuli for training. Subjects were asked to discriminate two side
views of a stimulus around a 30° view angle. The second column denotes the stimuli for testing the transfer of the learned view
discrimination ability to untrained stimuli. The test stimuli were different from the trained stimuli in size (A), part (B), identity (C), visual
field (D), configural information (E), and face information (F).View discrimination performances at seven view angles (one was the
trained view, others were the untrained views) were tested before and after training. The third column denotes the learning curve of each
stimulus in the first column. The discrimination threshold decreased gradually along an eight-day training course for all the stimuli. The
fourth column denotes the percent improvement of view discrimination performance on the test stimuli in the second column. The learning
effects in A–D transferred to the test stimuli in a view specific manner. However, the learning effects of inverted face and non-face objects
(E and F) could not transfer to the upright face stimuli.
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the selectivity was consistently found enhanced. Importantly,
selectivity enhancement has been found across a wide range
of tasks, including categorizing objects or shapes (Sigala and
Logothetis, 2002; Freedman et al., 2006; De Baene et al.,
2008), discriminating objects (Baker et al., 2002; Cox and
DiCarlo, 2008), recognizing objects (Op de Beeck et al.,
2007), and even when passively viewing objects (Woloszyn

and Sheinberg, 2012). It is thus plausible that neuronal
selectivity enhancement is the common mechanism under-
lying different types of object perceptual learning.

Despite the extremely high spatial and temporal resolution
in electrophysiological signals, lack of examination at the
neuronal population level is an evident shortage of single
neuron studies. The species difference between monkey and

Figure 3 Neural selectivity changes with categorization learning. (A) Stimuli and categories. The stimulus set consisted of line drawings
of faces with four varying features: eye height, eye separation, nose length and mouth height. (B) Two-dimensional representation of the
stimulus space. Monkeys were trained to categorize faces to two categories based on two of the four varying features. Dark line denotes the
category boundary. Black stars represent the stimuli of the first category and red ovals represent the stimuli of the second category. Each
number indicates the position of one corresponding stimulus from panel A. (C) Example of a neuron showing feature selectivity. Black
traces indicate the responses of the neuron to the best feature value; gray traces indicate responses to the worst feature value. s.i. denotes
the selectivity index. For each feature, one s.i. could be computed for each neuron. (D) Plots of the average selectivity index of each
neuron for the diagnostic versus the non-diagnostic features. Each point represents one neuron. Red circles represent neurons with
statistically significant selectivity for diagnostic features only. Blue circles represent neurons with statistically significant selectivity for
both diagnostic and non-diagnostic features. Black triangles represent neurons with no significant selectivity. Insert diagram shows the
distribution (numbers of neurons) of the selectivity index for the diagnostic features after subtraction of the selectivity index for the non-
diagnostic features.
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human also made it difficult to completely generalize these
findings to humans. Brain imaging techniques like functional
magnetic resonance imaging (fMRI) and electroencephalo-
graphy (EEG), which enable scientists to directly investigate
human neural system at a population level, have greatly
overcome the shortage of single neuron studies. With these
methods, it is possible to track neural changes over a long
period of learning course. For these reasons, it was proposed
that “some of the most interesting studies of brain plasticity or
reorganisation simply could not be done without brain scans”
(Anstis, 2010).

Brain imaging evidence

The blood-oxygen-level-dependent (BOLD) signal of fMRI
is thought to reflect neural activity at a neuronal population
level. Using fMRI, researchers found that human cortical
response could be modulated by long-term visual experience.
For example, the visual word form area (VWFA) in the left
temporal cortex was found to respond more vigorously to
words of subjects’ native language than words of other
language (Baker et al., 2007). Other instances come from
visual expertise researches. It is reported that activity in the
right hemispherical fusiform gyrus was strongly correlated
with the level of expertise on bird, car, or radiological
diagnosis (Gauthier et al., 2000; Xu, 2005; Harley et al.,
2009). These findings revealed that long-term visual
experience could enhance the neural activity in high-level
cortical areas.

Importantly, restricted experience in laboratory was shown
to be sufficient to elicit stronger activity in visual areas. van
der Linden et al.(2008) found that a three-day training on a
categorization task of bird led to response enhancement in
right fusiform gyrus region. Moore et al. (2006) found that the
response enhancement in LO induced by object learning was
correlated with the behavioral expertise effect. These findings
support that the human occipital-temporal area is crucial in
object perceptual learning. Furthermore, double dissociation
of learning effect with different training tasks indicates that
LO is only critical in object training task. Song et al. (2010)
trained subjects to either discriminate objects or associate
objects with some words. Their results showed that training
with the object discrimination task led to response enhance-
ment in LO area while training with word association led to
response enhancement in VWFA. Other studies also showed
that if the training task related to the low-level properties of
object (e.g., visual searching task), early visual cortex but not
LO area showed consistently enhanced response after training
(Sigman et al., 2005; Wong et al., 2012). These evidences
together indicate that human occipital-temporal cortex is
susceptible to visual experience on object recognition, in line
with electrophysiological findings.

Most fMRI studies examined the signal amplitude change.
Since BOLD signal in a voxel is thought to represent the

pooled activity of many neurons, the result of response
change is not comparable to selectivity change at the single
neuron level. However, using some fMRI experimental
paradigms such as fMRI adaptation, we could infer the
tuning property of a cortical area to a visual feature or object.

FMRI adaptation refers to the decrease of neural response
when the stimuli are repetitively presented(Grill-Spector and
Malach, 2001; Grill-Spector et al., 2006). Adaptation effect
has been reported both at the single neuron level and the
population level measured by BOLD fMRI. For example, as
Fig. 4A illustrated, subjects were presented with 32 pictures
in a scanning cycle. In Same condition, all the pictures were
the same, while in Different condition, all the pictures
contained different objects. Other conditions include different
numbers of object types. Figure 4B shows the neural response
in LO to these stimuli in different scanning cycles with
different conditions. Response increased monotonically with
the number of object types, indicating a strong suppression
when the same picture was presented repeatedly.

This selective suppression effect is an indicator of neuronal
selectivity in a specific cortical area. If an area shows an
adaptation effect to one feature of a stimulus, it’s likely that
this area contains neurons tuned to this feature. For example,
Fang et al. (2005) found that V1 showed a strong orientation
adaptation effect which was dependent on the orientation
difference between adapting and test stimuli. That is, the
smaller the orientation difference between two subsequently
presented gratings, the weaker the neural response in V1. This
result indicates that V1 contains orientation selective neurons
whose response is dependent on the difference between
stimulus and its preferred orientation. Therefore, if the neural
representations of two stimuli are more similar, the neural
response should be smaller when the two stimuli are
presented successively.

Jiang et al. (2007) found that training a car categorization
task could reduce the adaption effect in the LO area.
Specifically, before training, the neural responses to two
successively presented cars were similar between the
identical-car condition and the different-car condition. After
training on categorizing these cars, neural response to the
different cars was significantly higher than that to the
identical cars, indicating a larger representation difference
between the two different cars. This result is in accordance
with the enhancement of neuronal selectivity in single cell
studies. Further studies showed that this reduction on
adaptation effect was specific to the trained object(Gillebert
et al., 2009) and the trained feature dimension (Folstein et al.,
2012). These findings indicate that neural selectivity in the
human LO area could also be enhanced by perceptual
learning.

FMRI studies revealed a critical role of human occipital-
temporal area on object perceptual learning. However, fMRI
cannot tell us about the timing property of neural response
induced by learning because of the low temporal resolution of
fMRI BOLD signal (on a second level). EEG signals, on the
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other hand, provide an excellent time precision (on a
millisecond level) and thus have been widely used to realize
this purpose. Su et al. (2012) found that training to
discriminate face views shortened the latency of an event-
related potential (ERP) component called “N170.” N170 is a
negative potential peaked around 170ms after stimulus onset.
It is well accepted as reflecting face processing (Bentin et al.,
1996; Jeffreys, 1996). The result that learning shortens the
latency thus indicates a facilitation effect of training on the
processing of face information. Studies on object training
found that either the latency of N170 could be shortened
(Rossion et al., 2002) or the amplitude of N170 could be
enhanced (Peissig et al., 2007). Taken together, these results
suggest that learning modulates the encoding stage specific to
face or object information. However, a study concerning
object categorization task showed that training enhanced the
amplitude of N250, an ERP component around 250ms after

stimulus onset (Scott et al., 2008). More surprisingly, the
modulation on N250 but not N170 could last for one week
after training, indicating that the modulation of a relative late
stage of processing may be the long-lasting correlate of object
perceptual learning. More evidence is needed to elucidate the
temporal aspect of neural mechanisms underlying object
learning.

Concluding remarks

Existing evidence shows that learning could modify the
neural activity in object-sensitive visual cortex, either
enhancing the response or increasing the selectivity of
relevant neurons. Although significant progress has been
made regarding the mechanism of perceptual learning, some
important issues still need to be addressed.

Figure 4 Example of an fMRI adaptation experiment and the learning effect on fMRI adaptation. (A) An illustration of the sequence of
object images presented during an fMRI adaptation experiment. 32 pictures were sequentially presented in a repeating cycle. The number
of different objects in each cycle is given on the left, ranging from 1 (the same object picture presented repeatedly) to 32 (32 different
images). (B) Relative LOC signal of each repetition condition compared to the maximal activation (condition 32) as a function of number
of different pictures in the cycle. Note the fMRI signal decreased monotonically as the repetition frequency increased. (C) The stimuli and
result of an fMRI study on car categorization training. Subjects were trained to categorize morphed cars into two categories. Before and
after training, subjects were scanned while viewing three kinds of stimuli. In condition M0, stimuli in a trial are always two identical cars
which are one of the two prototypes. In condition M3, stimuli are two morphed car which are different from each other for 33% of each
prototype. Within and between refer to within the same category and between different categories respectively. Before training, LO
responses in three conditions were similar, indicating no difference on the neural representation of different cars. However, after training,
the response for different cars was significantly higher than that for identical car, revealing a release from adaptation after training.
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First, little is known about the long-term changes related to
training. Some studies compared the neural activities induced
by the trained objects and the untrained objects. Others
compared the activities before and after training. However,
very few studies investigated the long-term neural changes
induced by training. In one study concerning texture
discrimination training, it was found that response enhance-
ment in V1 did not persist two weeks after training
(Yotsumoto et al., 2008).This result indicates that response
enhancement may be a transient change. As the behavioral
improvement could last for months to years (Karni and Sagi,
1993), the long-lasting change needs to be further investi-
gated. The same problem exists in the object learning study.

Second, objects we see in real life are often in a crowded
environment or embedded in external noise, while partici-
pants in laboratory were often presented with isolated and
noiseless objects. Dosher and Lu (1998) proposed that
perceptual learning of orientation discrimination eliminates
both external noise and internal noise. They further found that
learning in a noisy display did not improve the performance in
clear display (Dosher and Lu, 2005), indicating two
independent processes. However, very few studies examined
the effect of noise on object learning. One study (Rainer et al.,
2004) found that the ability to identify a natural image could
be improved only when the image was embedded in external
noise. Their electrophysiological results also showed that
learning enhanced the activity of the most informative
neurons in V4 under the condition of the noisy display but
not the clear display. These findings were consistent with the
proposal that noise is excluded through channel reweighting.
However, more physiological researches are required to fully
understand how noise is reduced.

Third, although most studies indicate that learning of
object and elementary feature lead to changes in high-level
visual cortex and low-level visual cortex respectively, it is
especially interesting to investigate if there is common
mechanism underlying these two different kinds of learning.
Recently, some modeling and psychophysical works sug-
gested that perceptual learning of elementary feature is related
to changes beyond the visual cortex (Dosher and Lu, 1998;
Xiao et al., 2008). Consistent with this hypothesis, human
imaging studies found that orientation discrimination learning
was related to the neural changes in the anterior cingulate
cortex which is a higher decision-making area (Kahnt et al.,
2011). Results in other human imaging and electrophysiolo-
gical studies also implied the involvement of other higher-
order areas, such as human attention-related regions and
monkey lateral intraparietal area, in learning of contrast
discrimination and motion direction discrimination (Mukai et
al., 2007; Law and Gold, 2008). However, there is little
evidence tapping similar issues in object learning. Future
studies bridging different kinds of learning would help to
improve our understanding of perceptual learning as a whole.

Finally, in additional to regional changes of brain activity,
training was found to modify many other characteristics of the

brain. For example, motor learning changes the functional
connectivity among motor-related cortical areas (Ma et al.,
2010). This result suggests that the functional change induced
by training may not be restricted to some specific regions, but
exists in a brain network level. In addition to functional
changes, evidence also shows that brain structure is also
susceptible to experience (Zatorre et al., 2012). For example,
memory training could change the cortical thickness of
specific regions (Engvig et al., 2010). Surprisingly, even
white matter was found to be modified by training of a visual-
motor skill (Scholz et al., 2009). Examining these issues
could provide insight to perceptual learning from different
perspectives, yet very few of such work have been done in
object perceptual learning. Future works in these directions
will make a whole picture of brain plasticity clearer.
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